Chapter 4
The Class Diagram

We use the class diagram to model the static structure of a system, thus
describing the elements of the system and the relationships between
them. These elements and the relationships between them do not change
over time. For example, students have a name and a matriculation num-
ber and attend various courses. This sentence covers a small part of the
university structure and does not lose any validity even over years. It is
only the specific students and courses that change.

The class diagram is without doubt the most widely used UML dia-
gram. It is applied in various phases of the software development pro-
cess. The level of detail or abstraction of the class diagram is different
in each phase. In the early project phases, a class diagram allows you to
create a conceptual view of the system and to define the vocabulary to be
used. You can then refine this vocabulary into a programming language
up to the point of implementation. In the context of object-oriented pro-
gramming, the class diagram visualizes the classes a software system
consists of and the relationships between these classes. Due to its sim-
plicity and its popularity, the class diagram is ideally suited for quick
sketches. However, you can also use it to generate program code auto-
matically. In practice, the class diagram is also often used for documen-
tation purposes.

Before we introduce the concepts of the class diagram, let us first
take a look at objects, which are modeled in object diagrams. Object
diagrams allow you to depict concrete objects that appear in a system at
a specific point in time. Classes provide schemas for characterizing ob-
jects and objects are instances of classes. The object diagram visualizes
instances of classes that are modeled in a class diagram.

© Springer International Publishing Switzerland 2015 49
M. Seidl et al., UML @ Classroom, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-12742-2_4

Class diagram

Object diagram

Figure 4.1
Example of an object
diagram

Object diagram

50 4 The Class Diagram

4.1 Objects

A system contains numerous different individuals. Individuals might be
not only persons but also animals, plants, inanimate objects, artifacts,
etc. that can be identified uniquely. For example, as part of her IT Stud-
ies program, Helen Lewis attends the lecture Object-Oriented Modeling
(OOM) at the university. Helen Lewis, IT Studies, and Object-Oriented
Modeling are individuals (concrete objects) in a university administra-
tion system and are in a relationship with one another.

helenlLewis:Student oom:Course

firstName = "Helen" name = "OOM"
lastName = "Lewis" semester = "Summer"
dob = 04-02-1980 hours = 2.0
matNo = "9824321"

mikeFox:Student iprog:Course lh1:LectureHall
firstName = "Mike" name = "IPROG" name = "LH1"
lastName = "Fox" semester = "Winter" seats = 400

dob = 02-01-1988 hours = 4.0
matNo = "0824211"

paulSchubert:Student db:Course Ih2:LectureHall
firstName = "Paul" name = "Databases” name = "LH2"
lastName = "Schubert" semester = "Summer" seats = 100

dob = 11-04-1984
matNo ="0323123"

hours = 2.0

In UML, we depict concrete objects of a system and their rela-
tionships (links) using object diagrams. Figure 4.1 shows a small ob-
ject diagram. It contains three student objects: helenLewis, mikeFox, and
paulSchubert. The first name and the last name of the object helenLewis
are Helen and Lewis respectively. We also know the date of birth and
matriculation number for each of these objects. The system contains the
three courses oom (Object-Oriented Modeling), iprog (Introduction to
Programming), and db (Databases). The course iprog takes place in lec-
ture hall Ih1 and the course db takes place in lecture hall Ih2. There is
no corresponding information for oom. Student helenLewis attends the
two courses oom and iprog. Student mikeFox also attends iprog; course
db is attended only by student paulSchubert (at least, among these three
students).

4.1 Objects 51

An object has a unique identity and a number of characteristics that
describe it in more detail. It rarely appears in isolation in a system;
instead, it usually interacts and communicates with other objects. The
relationships between the objects are referred to as links. The character-
istics of an object include its structural characteristics (attributes) and
its behavior (in the form of operations). Whilst concrete values are as-
signed to the attributes in the object diagram, operations are generally
not depicted. Operations are identical for all objects of a class and are
therefore usually described exclusively for the class.

In the object diagram, an object is shown as a rectangle which can be
subdivided into multiple compartments. The first compartment always
contains information in the form objectName:Class. This information is
centered and underlined. In Figure 4.1 for example, helenLewis and oom
are object names and Student and Course are classes. The object name
or the specification of the class may be omitted. If only a class name
is given, it must be preceded by a colon. If the class name is omitted,
the colon is also omitted. If the object name is omitted, this object is
referred to as an anonymous object. Examples of different notation al-
ternatives are shown in Figure 4.2.

maxMiller maxMiller:Person :Person

maxMiller maxMiller:Person :Person
firstName = "Max" firstName = "Max" firstName = "Max"
lastName = "Miller" lastName = "Miller" lastName = "Miller"
dob = 03-05-1973 dob = 03-05-1973 dob = 03-05-1973

If the rectangle has a second compartment, this compartment con-
tains the attributes of the object and the current values of these attributes
(see Fig. 4.1 and Fig. 4.2). A link is represented as a continuous line
connecting the objects that are in a relationship with one another. Al-
though the name of an object must be unique, different objects can have
attributes with identical values. If, in our system, there were two people
with the first name Max and the last name Miller, and both were born on
the same day, we would have to represent them using different objects
with different object names (e.g., maxMiller1 and maxMiller2). However,
their attribute values would be identical.

The values of the attributes generally change over time. For exam-
ple, if the person Max Miller changes his last name, the individual as a
whole does not change, only the value of the attribute lastName. The ob-

Object

Link

Anonymous object

Figure 4.2
Notation alternatives for
objects

From object to class

Class

Figure 4.3
Definition of a class in
UML and Java

Instance
Characteristics of
classes ...

52 4 The Class Diagram

ject diagram therefore always represents only a snapshot of objects at a
specific moment in time and the objects can develop further and change
as time passes. If specific objects are not represented in the object dia-
gram, this does not mean that they do not exist; it merely expresses that
the unrecorded objects are not important for the moment.

Many individuals that appear in a system have identical character-
istics and behavior. For example, persons always have a first name, a
last name, and a date of birth. Students also have a matriculation num-
ber. Courses always have a name and a number of hours, as well as a
semester in which they take place. Information about the lecture halls
includes the number of seats available. If every person, every course,
and every lecture hall of the system were to be modeled individually, the
model would soon become over-complicated and impossible to main-
tain. Using classes enables you to describe similar objects without hav-
ing to detail each and every object individually.

4.2 Classes

A class is the construction plan for a set of similar objects that appear
in the system to be specified. Classes can characterize, for example,
persons (e.g., students), things (e.g., buildings), events (e.g., courses or
exams), or even abstract concepts such as groups. In object-oriented
programming languages like Java [4], programs are created based on
classes. Figure 4.3 compares a class definition from a UML class dia-
gram with a class definition in Java.

class Course {

Course

: String name;
name: String SemesterType semester;
semester: SemesterType float hours;
hours: float < >

int getCredits();
Lecturer getlLecturer();
float getGPA();

getCredits(): int
getlLecturer(): Lecturer
getGPA(): float

Objects represent the concrete forms of classes and are referred to as
their instances. The relevant characteristics of the instances of a class
are described through the definition of structural characteristics (at-
tributes) and behavior (operations). Operations enable objects to com-
municate with one another and to act and react.

4.2 Classes 53

An attribute allows you to store information that is known for all in-
stances but that generally has different specific values for each instance.
Operations specify how specific behavior can be triggered on individual
objects. For example, the class Course from Figure 4.3 has the attributes
name and hours. Figure 4.1 shows concrete forms of these attributes.
Possible operations of this class are getGPA() and getLecturer(), which
return the grade point average or lecturer for a course respectively.

To ensure that a model remains clear and understandable, we gen-
erally do not model all of the details of the content: we only include
the information that is relevant for the moment and for the system to
be implemented. This means that we abstract from reality to make the
model less complex and to avoid an unnecessary flood of information.
In the model, we restrict ourselves to the essentials. For example, in a
university administration system, it is important to be able to manage
the names and matriculation numbers of the students; in contrast, their
shoe size is irrelevant and is therefore not included.

4.2.1 Notation

In a class diagram, a class is represented by a rectangle that can be sub-
divided into multiple compartments. The first compartment must con-
tain the name of the class, which generally begins with a capital letter
and is positioned centered in bold font (e.g., Course in Figure 4.4).
According to common naming conventions, class names are singular
nouns. The class name should describe the class using vocabulary typi-
cal for the application domain. The second compartment of the rectan-
gle contains the attributes of the class, and the third compartment the

Course
Course
(a)
+ name: String
+ semester: SemesterType
Course - hours_: flqat
- [credits: int
name + getCredits(): int
semester + getLecturer(): Lecturer
hours + getGPA(): float
. + getHours(): float
getCredits() + setHours(hours: float): void
getlLecturer()
getGPA() (C)

(b)

... are attributes and
operations

Level of detail

Abstraction

Figure 4.4
Representation of a class
and its characteristics

Attribute
Type
Figure 4.5
Syntax of the attribute
specification

54 4 The Class Diagram

operations of the class. The contents of these compartments are posi-
tioned left-justified and are optional. In general, the level of detail in
these compartments reflects the respective phase of the software devel-
opment process in which the class is being examined. While the class
diagram excerpt in Figure 4.4(a) does not contain any details of the
class Course, the diagram in Figure 4.4(b) is the result of a more de-
tailed analysis of the characteristic features of courses, showing specif-
ically that the class Course contains three attributes and three opera-
tions. The diagram in Figure 4.4(c) presents even more detail (such as
the type information and visibilities), including information that is rel-
evant for implementation or for automatic code generation. If specific
information is not included in the diagram, this does not mean that it
does not exist; it simply means that this information is not relevant at
this moment in time or is not included for practical reasons, for exam-
ple, to prevent the diagram from becoming over-complicated. Attributes
and operations are usually accessed via their names, which, according
to naming conventions, begin with a lower case letter.

4.2.2 Attributes

Figure 4.5 shows the syntax of attributes. An attribute has at least a
name. The type of the attribute may be specified after the name us-
ing : Type. Possible attribute types include primitive data types, such
as integer and string, composite data types, for example a date, an enu-
meration, or user-defined classes (see Section 4.8). By specifying name:
String, for example, we define the attribute name with type String. Fig-
ure 4.6 shows further examples of attribute types. We will look at the
subsequent, optional multiplicity specification in more detail in the next
section.

Visibility @ Name O Type Multiplicity

@ Default @ Property @

()
\/

4.2 Classes 55

To define a default value for an attribute, you specify = Default, where
Default is a user-defined value or expression (see Fig. 4.6). The system
uses the default value if the value of the attribute is not set explicitly by
the user. Thus it is impossible that at some point in time, an attribute has
no value. For example, if in our system, a person must always have a
password, a default password pw123 is set when a new person is entered
in the system. This password is valid until it is reseted.

Person

age = now.getYear() -
firstName: String dob.getYear()

lastName: String -
dob: Date -7
address: String [1..*] {unique, ordered} -7
ssNo: String {readOnly} L-
/age: int

password: String = "pw123"
personsCounter: int

getName(out fn: String, out In: String): void
updateLastName(newName: String): boolean
etPersonsCounter(): int

You can specify additional properties of the attribute within curly
brackets. For example, the property {readOnly} means that the attribute
value cannot be changed once it has been initialized. In the example in
Figure 4.6, the social security number ssNo is an attribute that must not
be changed. Further properties will be introduced in the next section
within the description of multiplicity specifications.

The specification of a forward slash before an attribute name indi-
cates that the value of this attribute is derived from other attributes. An
example of a derived attribute is a person’s age, which can be calcu-
lated from the date of birth. In Figure 4.6, a note contains a calculation
rule for determining a person’s age. Depending on the development tool
used, such notes are formulated in natural language, in a programming
language, or in pseudocode. The optional visibility marker (+, —, #, or
~) in front of an attribute name or operation name as shown in Fig-
ure 4.4(c) is discussed in detail on page 58.

4.2.3 Multiplicities

The multiplicity of an attribute indicates how many values an attribute
can contain. This enables you to define arrays, just like in programming
languages. The multiplicity is shown as an interval enclosed by square

Default value

Figure 4.6
Properties of attributes

Properties of attributes

Muiltiplicity

Figure 4.7
Syntax of the multiplicity
specification

Unique, non-unique,
ordered, unordered

Operation

56 4 The Class Diagram

brackets in the form [minimum .. maximum], whereby minimum and max-
imum are natural numbers indicating the lower and upper limits of the
interval. The value of minimum must be smaller than or equal to the
value of maximum. If there is no upper limit for the interval, this is ex-
pressed with an asterisk x. The class Person in Figure 4.6 contains an
attribute address: String [1..x]. This denotes that a person has at least one
and possibly multiple addresses. If minimum and maximum are iden-
tical, you do not have to specify the minimum and the two dots. For
example, [5] means that an attribute adopts exactly five values. The ex-
pression [x] is equivalent to [0..x]. If you do not specify a multiplicity for
an attribute, the value / is assumed as default, which specifies a single-
valued attribute. The valid notation for multiplicities is summarized in
Figure 4.7.

@ Min () Max

If an attribute can adopt multiple values, it makes sense to specify
whether the attribute is:

A set (no fixed order of elements, no duplicates)

A multi-set (no fixed order of elements, duplicates possible)
An ordered set (fixed order, no duplicates)

A list (fixed order, duplicates possible)

You can make this specification by combining the properties {non-
unique} and {unique}, which define whether duplicates are permitted or
not permitted, and {ordered} and {unordered}, which force or cancel a
fixed order of the attribute values. For example, the attribute address:
String [1..x] {unique, ordered} contains all the addresses for a person (see
Fig. 4.6). As each address should only be contained once, the attribute
is labeled {unique}. By specifying {ordered}, we express that the order
of the addresses is important. For example, the first address could be
interpreted as the main residence.

4.2.4 Operations

Operations are characterized by their name, their parameters, and the
type of their return value (see Fig. 4.8). When an operation is called in
a program, the behavior assigned to this operation is executed. In pro-
gramming languages, an operation corresponds to a method declaration

4.2 Classes 57

Visibility Name @ Parameter @
'
>/

@ Type @ Property @

()
/

or function declaration which is defined but not implemented. The class
diagram is not suitable for describing the behavior of objects in detail
as it only models signatures of the operations that the objects provide;
it does not model how these operations are actually implemented. UML
offers special behavior diagrams for depicting the implementation of
operations, for example the activity diagram (see Chapter 7).

In a class diagram, the operation name is followed by a list of pa-
rameters in parentheses. The list itself may be empty. A parameter is
depicted similarly to an attribute. The only obligatory information is the
name of the parameter. The addition of a type, a multiplicity, a default
value, and further properties, such as ordered, unique, or their negated
counterparts is optional (see Fig. 4.9).

The optional return value of an operation is specified with the type
of the return value. In Figure 4.6, the class Person has an operation
updateLastName(newName: String): boolean. The only parameter, new-
Name, has the type String and specifies the new name for a person. The
return value has the type boolean. If frue is returned, the renaming was
successful, otherwise false is returned.

If required, you can also prepend a direction to the parameter name.
This direction can have one of the following values: in, out, or inout (see
Fig. 4.9). The value indicates whether the parameter is an input param-
eter, an output parameter, or both. If a parameter has the direction in,
this indicates that when the operation is used, a value is expected from
this parameter. The specification of the direction out expresses that after
the execution of the operation, the parameter has adopted a new value.
If an operation should have multiple return values rather than just one,
you can express this using multiple parameters with the direction out.
The specification of inout indicates a combined input/output parameter.
If no direction is specified, in is the default value. In Figure 4.6, the op-
eration getName(out fn: String, out In: String) has two parameters with the
direction value out. For example, if we use the operation getName in a
program by calling getName (firstName, lastName), whereby

Figure 4.8
Syntax of the operation
specification

Parameters

Return value

Input and output
parameters

Figure 4.9
Syntax of the parameter
specification

Visibility

Information hiding

58 4 The Class Diagram

firstName and lastName are variables in the sense of an impera-
tive programming language, successful execution of the operation pro-
duces the following results: the variable £irstName contains the first
name and the variable 1astName contains the last name of the object
of type Person on which the operation getName was called.

N6,

o
C
—

Name O Type Multiplicity

(@)|¢

O,

Default @ Property @

()
>/

4.2.5 Visibility Markers

The visibility of attributes and operations specifies who is and who is not
permitted to access them. If an attribute or operation does not have a vis-
ibility specified, no default visibility is assumed. Table 4.1 lists the types
of visibilities and their meaning in UML. Only an object itself knows
the values of attributes that are marked as private. In contrast, anyone
can view attributes marked as public. Access to protected attributes is
reserved for the class itself and its subclasses. If a class has a package
attribute, only classes that are in the same package as this class may ac-
cess this attribute. Accordingly, the visibility of an operation specifies
who is permitted to use the functionality of the operation. Examples are
given in Figure 4.4(c) on page 53. Note that the meaning of visibilities
can vary in different programming and modeling languages even if they
have the same name in the different languages.

Visibilities are used to realize information hiding, an important con-
cept in computing. Marking the attributes that represent the state of an
object as private protects this state against unauthorized access. Access
is therefore only possible via a clearly defined interface, such as via
operations that are declared public.

In some cases, class diagrams contain only those attributes and op-
erations that are visible externally. Attributes and operations of classes

4.2 Classes 59

that are marked as private are often omitted, as they are important for
the realization, that is, the implementation of a class, but not for its use.
Therefore, whether or not attributes and operations marked as private
are specified depends on the intention behind and the time of creation
of the class diagram.

Name |Symbol|Description

public + Access by objects of any classes permitted

private - Access only within the object itself permitted

protected # |Access by objects of the same class and its subclasses
permitted

package ~ | Access by objects whose classes are in the same pack-
age permitted

4.2.6 Class Variables and Class Operations

Attributes are usually defined at instance level. If, for example, a class
is realized in a programming language, memory is reserved for every at-
tribute of an object when it is created. Such attributes are also referred to
as instance variables or instance attributes. In Figure 4.10 for example,
lastName and dob are instance variables. If, in an object-oriented pro-
gram generated from this class of diagram, personl is an instance of
the class Person, for example, personl.lastName can be used to
refer to the last name of the person. Access to this person’s date of birth
is not possible as the visibility of the attribute dob is private. To find
out the date of birth of personl, the function personl.getDob ()

must be called. An operation such as getDob() can only be executed if
a corresponding instance that offers this operation was created before-
hand. In our case, this is the instance personl. An operation may use
all visible instance variables.

In contrast to instance variables, class variables are created only
once for a class rather than separately for every instance of this class.
These variables are also referred to as static attributes or class at-
tributes. Counters for the number of instances of a class (see Fig. 4.10)
or constants such as & are often realized as static attributes. In the
class diagram, static attributes are underlined, just like static operations.
Static operations, also called class operations, can be used if no instance
of the corresponding class was created. Examples of static operations
are mathematical functions such as sin (x) or constructors. Construc-
tors are special functions called to create a new instance of a class. The
method invocation Person.getPCounter () uses the static opera-

Table 4.1
Visibilities

Synonyms:

e Instance variable
e Instance attribute

Synonyms:

e C(Class variable

e C(lass attribute

e Static
attribute

Synonyms:

e (lass operation
e Static operation

Figure 4.10
Translation of a class from
UML to Java

Association

Binary association

Reading direction

(A} s

60 4 The Class Diagram

tion getPCounter () defined in Figure 4.10; the operation is called
directly via the class and not via an instance. Unless stated otherwise,
attributes and operations denote instance attributes and instance opera-
tions in most object-oriented languages. We also follow this convention
in this book.

class Person {

Person
public String firstName;
+ firstName: String public String lastName;
+ lastName: String private Date dob;
- dob: Date <> protected String[] address;
address: String[*] private static int pCounter;

- pCounter: int

public static int getPCounter () {..}

+ getPCounter(): int public Date getDob () {..}

+ getDob(): Date }

4.3 Associations

Associations between classes model possible relationships, known as
links, between instances of the classes. They describe which classes are
potential communication partners. If their attributes and operations have
the corresponding visibilities, the communication partners can access
each other’s attributes and operations. A class diagram can be viewed
as a graph in which the classes represent the nodes and the associations
represent the edges. Figure 4.11 depicts a class diagram and a valid
object diagram. The class diagram shows that the classes Professor and
Student are related via the association givesLectureFor. In the role as a
lecturer, a professor has zero or more students and one student has zero
or more professors in the role of lecturer. The object diagram models a
concrete scenario.

4.3.1 Binary Associations

A binary association allows us to associate the instances of two classes
with one another. The relationships are shown as edges (solid line) be-
tween the partner classes involved. The edge can be labeled with the
name of the association optionally followed by the reading direction, a
small, black triangle. The reading direction is directed towards one end

4.3 Associations 61

* givesLectureFor p» *
Professor Student
+lecturer

helenLewis:Student

- . /
annaMiller:Professor —
aulSchubert:Student
.] paulschubert:otudent
frankStone:Professor

mikeFox:Student

of the association and merely indicates in which direction the reader of
the diagram should “read” the association name. We have already seen
a binary association with reading direction in Figure 4.11. In this di-
agram, the reading direction indicates that professors give lectures for
students and not the other way around.

If the edge is directed, that is, at least one of the two ends has an open
arrowhead, navigation from an object to its partner object is possible. In
simple terms, navigability indicates that an object knows its partner ob-
jects and can therefore access their visible attributes and operations. The
navigation direction has nothing to do with the reading direction, as the
example in Figure 4.11 shows. The reading direction indicates that pro-
fessors give lectures for students. However, the navigability specified
indicates that students can access the visible characteristics of profes-
sors whose lectures they attend. In contrast, a professor cannot access
the visible characteristics of the students who attend the professor’s lec-
ture because the professor does not know them.

A non-navigable association end is indicated by the explicit specifi-
cation of an X at the association end concerned. For example, if such
an X appears at the association end of A for an association between the
classes A and B, this means that B cannot access the attributes and op-
erations of A—not even the public ones. Bidirectional edges without
arrowheads or X at their ends do not provide any information about the
navigation direction but in practice, bidirectional navigability is usually
assumed. The navigation direction represents a hint for the subsequent
implementation because in object-oriented programming languages, as-
sociations are realized as references to the associated objects. An associ-
ation can also be represented in this way in the class diagram, that is, as
an attribute with the appropriate multiplicity, whereby the type of the at-
tribute is the class of the corresponding partner objects. This representa-
tion has the same semantics as a navigable association end. Figure 4.12

Figure 4.11

Example of a binary asso-
ciation in a class diagram

and a valid object diagram

Navigability

Non-navigability

Figure 4.12
Associations in UML and
Java

Figure 4.13

Examples of multiplicity
specifications in binary
associations

62

4 The Class Diagram

Professor Professor
+lecturer | *
* Student
Student + lecturer: Professor[*]
(@ (b)

class Professor {..}
class Student {

public Professor[] lecturer;

(c)

shows (a) a class diagram in which the student-professor relationship is
modeled explicitly as an association, (b) a class diagram in which the
relationship is represented by an attribute in the class Student, and (c)
the translation into Java. The class diagram in Figure 4.12(a) is prefer-
able, as here the relationship between the classes is visualized explicitly
and it is visible immediately, while in the alternative in Figure 4.12(b),
the association between Student and Professor can only be recognized
by reading the type information of the attribute lecturer.

(c)

1 issues * .
Lecturer Assignment
(a)
1.% ives 1.%*
Lecturer 9 Lecture
(b)
* +examiner
Person
*
+examinee
examines

4.3 Associations 63

In the same way that multiplicities of attributes and parameters are
specified, multiplicities of associations are given as an interval in the
form minimum..maximum. They specify the number of objects that may
be associated with exactly one object of the opposite side. The values
that the minimum and maximum may adopt are natural numbers and an
asterisk *, which expresses that there is no restriction. If minimum and
maximum are identical, one value and the dots can be omitted. Again,
0..x means the same as *. Figure 4.13 shows examples of multiplicity
specifications for binary associations. Figure 4.13(a) shows that a lec-
turer may issue no, one, or multiple assignments and that an assignment
is issued by exactly one lecturer. No assignment may exist without an
association to a lecturer. Figure 4.13(b) shows that a lecturer gives at
least one lecture and a lecture is given by at least one lecturer. Finally,
Figure 4.13(c) shows that a person in the role of examiner can exam-
ine any number (> 0) of persons and a person in the role of examinee
can be examined by any number of examiners. In the example in Fig-
ure 4.13(c), the model does not exclude the case that persons may ex-
amine themselves. If this should be prohibited, additional constraints
must be specified.

You may also label the association ends with role names. A role de-
scribes the way in which an object is involved in an association rela-
tionship, that is, what role it plays in the relationship. In the association
in Figure 4.13(c), the Person adopts the role of examiner or examinee.

To express that an object of class A is to be associated with an object
of class B or an object of class C but not with both, you can specify an
xor constraint (exclusive or). To indicate that two associations from the
same class are mutually exclusive, they can be connected by a dashed
line labeled {xor}. For example, an exam can take place either in an office
or in a lecture hall but not in both (see Fig. 4.14).

Office LectureHall

Exam

Multiplicity

Role

Xor constraint

Figure 4.14
Examples of associations
with xor constraints

N-ary association

(A >8]

Muiltiplicities for n-ary
associations

Figure 4.15
Example of n-ary (here
ternary) association ...

64 4 The Class Diagram

4.3.2 N-Ary Associations

If more than two partner objects are involved in a relationship, you can
model this using an n-ary association. An n-ary association is repre-
sented with a hollow diamond in the center. The diamond is connected
with all partners of the relationship by means of an undirected edge.
The name of the association is specified next to the diamond. There are
no navigation directions for n-ary associations; however, multiplicities
and role names are possible. Multiplicities define how many objects of
a role/class may be assigned to a fixed (n — 1)-tuple of objects of the
other roles/classes.

Figure 4.15 models the relationship grades between the instances of
the classes Lecturer, Student, and Exam. The multiplicities are defined as
follows: one specific student takes one specific exam with no lecturer
(i.e., does not take this exam at all) or with precisely one lecturer. This
explains the multiplicity 0..1 for the class Lecturer. One specific exam
with one specific lecturer can of course be taken by any number of stu-
dents and one specific student can be graded by one specific lecturer for
any number of exams. In both cases, this is expressed by the multiplic-
ity =. In this model, it is not possible that two or more lecturers grade
one student for the same exam.

Student

Exam grades

0..1 | +examiner

Lecturer

If you tried to express this ternary association with two binary asso-
ciations, you would have a model with a different meaning. In the rep-
resentation shown in Figure 4.16, an exam can be graded by multiple
lecturers. The ternary association in Figure 4.15 clearly shows which
lecturer a student passed a specific exam with—this is not the case with
the diagram shown in Figure 4.16.

For example, with the model shown in Figure 4.15, it is possible to
express that student s1 took the exam e1 with lecturer |1 and that student

4.4 Association Classes 65

Student

Exam

Lecturer

s2 took the same exam el with lecturer 12. With the model shown in
Figure 4.16, it is only possible to express that the students s1 and s2
took the exam e1 and that exam e1 has two examiners 1 and 12. With
this model, you cannot express which lecturer grades which student.

As an alternative to the ternary association in Figure 4.15, an addi-
tional class can be introduced which is connected to the original classes
via binary associations (see Fig. 4.17). However, in this model it is pos-
sible that one student is graded multiple times for one and the same
exam what is not possible with the model of Figure 4.15.

Exam Grading Student

*

1

Lecturer

4.4 Association Classes

If you want to assign attributes or operations to the relationship between
one or more classes rather than to a class itself, you can do this using
an association class. An association class is represented by a class and
an association that are connected by a dashed line. The association can
be binary or n-ary. Although the representation includes multiple com-
ponents, an association class is one language construct that has both the
properties of a class and the properties of an association. Therefore, in
a diagram, the class and association of an association class must have
the same name, although you do not have to name both (see the asso-
ciation classes Enroliment and Grade in Fig. 4.18). An association class

Figure 4.16
... versus example with two
binary associations ...

Figure 4.17
... versus example with
additional class

Association class

Figure 4.18
Examples of association
classes

Figure 4.19

Attempt to model an as-
sociation class with a
“normal” class and cor-
responding relationships

66 4 The Class Diagram

StudyProgram
1.%
Enroliment
+ startDate: Date
// *
Certificate
Student
binary association + datelssued: Date
class *)
Grade
Exam
+ grade: int
0..1 | +examiner ternary association
class
Lecturer

can also have associations with other classes. In Figure 4.18, the asso-
ciation class Grade, which contains information about a student’s grade
for a specific exam, is associated with the class Certificate.

In general, you cannot replace an association class with a “normal”
class which is itself associated with the original two associated classes,
as shown by the following example. Let us assume that we want to
model that a student enrolls for at least one study program and has pre-
cisely one enrollment for each chosen study program. In turn, any num-
ber (> 0) of students can enroll for one specific study program. This
situation is shown in Figure 4.19(a).

Figure 4.19(b) shows the attempt to model this situation with only
“normal” classes. An enrollment is assigned to precisely one student

Study N Study
Program Program
1.% *
Enrollment |- —-——- Enrollment

Student Student

(@) (b)

4.5 Aggregations 67

and precisely one study program, while one study program is related to
any number of enrollment objects. A student has at least one enrollment.
So far the requirements are met. However, if we examine the diagram
more closely, we see that in Figure 4.19(b), a student can have multiple
enrollments for one and the same study program, which is not the in-
tention. In contrast, in Figure 4.19(a), a student can enroll for a specific
study program only once.

If duplicates are explicitly required for an association class, at least
one association end must be identified as {non-unique}. If this property
is not specified explicitly, the default value {unique} is assumed. In Fig-
ure 4.20(a), a student can only be granted an exam meeting to discuss
the result of the student’s written exam once. Figure 4.20(b) shows a
more student-friendly model. There, the use of {non-unique} allows a
student to have more than one exam meeting.

Student Student
* *
Exam | | Exam | | (ique}
Meeting Meeting non-unique
* *
Exam Exam

(a) (b)

4.5 Aggregations

An aggregation is a special form of association that is used to express
that instances of one class are parts of an instance of another class. UML
differentiates between two types: shared aggregation and composition.
Both are represented by a diamond at the association end of the class
that stands for the “whole”. The differentiation between composition
and shared aggregation is indicated by a solid diamond for a composi-
tion and a hollow diamond for a shared aggregation. Both are transitive
and asymmetric associations. In this case, transitivity means that if B is
part of A and C is part of B, C is also part of A. Asymmetry expresses
that it is not possible for A to be part of B and B to be part of A simulta-
neously.

Figure 4.20

Example of {unique} and
{non-unique} association
ends

Aggregation

Parts-whole relationship

Figure 4.21
Examples of shared
aggregations

Shared aggregation

EXSSEN

Composition

[~]—e5]

68 4 The Class Diagram

0..1 *
LabClass < Student
(a)
1..% *
StudyProgram <>———— Course

4.5.1 Shared Aggregations

In the UML standard, a shared aggregation has intentionally informal
semantics. In principle, a shared aggregation expresses a weak belong-
ing of the parts to a whole, meaning that parts also exist indepen-
dently of the whole. The multiplicity at the aggregating end may be
greater than 1, meaning that an element can be part of multiple other
elements simultaneously. Shared aggregations can therefore span a di-
rected acyclic graph. Figure 4.21 shows two examples of the use of a
shared aggregation. In Figure 4.21(a), a lab class consists of any num-
ber of students. However, a student can participate in a maximum of one
lab class. In Figure 4.21(b), a study program is made up of any (> 0)
number of courses. A course is assigned to at least one (> 1) study pro-
gram.

4.5.2 Compositions

The use of a composition expresses that a specific part can only be con-
tained in at most one composite object at one specific point in time.
This results in a maximum multiplicity of 1 at the aggregating end.
The composite objects therefore form a forest of trees, indicating an
existence dependency between the composite object and its parts; if the
composite object is deleted, its parts are also deleted. Figure 4.22 shows
examples of compositions. A lecture hall is part of a building. Due to
the multiplicity 1, there is an existence dependency between elements
of these two classes. The lecture hall cannot exist without the building.
If the building no longer exists, the lecture hall also does not exist any-
more. The situation is different for a beamer which is also associated
with a lecture hall by a composition. However, the multiplicity 0..1 is
specified at the aggregating end. This means that the beamer can exist
without the lecture hall, that is, it can be removed from the lecture hall.
If the beamer is located in the lecture hall and the lecture hall ceases

4.6 Generalizations 69

1 * 0.1 1 Figure 4.22
Building @ — LectureHall @—— Beamer Examples of compositions

to exist—for example, because the building is torn down—the beamer
also ceases to exist. However, if it was removed from the lecture hall
beforehand, it continues to exist.
A shared aggregation is differentiated from an association only by
the fact that it explicitly visualizes a “part of” relationship. In a compo-
sition, the existence dependency signifies a far stronger bond between Existence dependency
the composite object and its parts, which means that a composition and of a composite object’s
an association are not interchangeable. A composition is usually used if ~ parts
the parts are physically embedded in the composite object or are only
visible for the composite object. If the parts are referenced externally,
this can indicate that a shared aggregation is sufficient. Furthermore, if
the composite object is deleted or copied, its parts are also deleted or
copied when a composition is used.

4.6 Generalizations

Different classes often have common characteristics. For example, in
Figure 4.23, the classes Student, ResearchAssociate, and Administra-
tiveEmployee all have the attributes name, address, dob, and ssNo. Stu-
dents and employees of both types are distinguished by further char-
acteristics specific to the respective class: a student has a matriculation

1 % * Figure 4.23
Study o Course Faculty Class diagram without
Program generalization
1.% * N 1
&b
enrolls teaches 6'@9 isAssigned
.\(y
* 1.% * *
Student Research Administrative
Associate Employee
name name name
address address address
dob dob dob
ssNo ssNo ssNo
matNo acctNo acctNo

Inheritance from
superclass to subclass

Synonyms:

Inheritance
Generalization
“Is a” relationship

Generalization notation

(A >8]

70 4 The Class Diagram

number and has enrolled for at least one study program; employees have
a checking account and are assigned to a faculty. Instances of the class
ResearchAssociate are in a teaches relationship with any number of in-
stances of the class Course.

We can use a generalization relationship to highlight commonalities
between classes, meaning that we no longer have to define these com-
mon characteristics multiple times. Conversely, we can use the general-
ization to derive more specific classes from existing classes. If we want
to add a class Professor, which is a subclass of ResearchAssociate, in
Figure 4.23, we use the generalization to avoid having to copy the char-
acteristics of the class ResearchAssociate to the class Professor.

4.6.1 Inheritance

The generalization relationship expresses that the characteristics (at-
tributes and operations) and associations that are specified for a general
class (superclass) are passed on to its subclasses. Therefore, the gen-
eralization relationship is also referred to as inheritance. This means
that every instance of a subclass is simultaneously an indirect instance
of the superclass. The subclass “possesses” all instance attributes and
class attributes and all instance operations and class operations of the
superclass provided these have not been marked with the visibility pri-
vate. The subclass may also have further attributes and operations or
enter into other relationships independently of its superclass. Accord-
ingly, operations that originate from the subclass or the superclass can
be executed directly on the instance of a subclass.

A generalization relationship is represented by an arrow with a hol-
low, triangular arrowhead from the subclass to the superclass, for exam-
ple from Student to Person in Fig. 4.24. The name of a superclass must
be selected such that it represents an umbrella term for the names of
its subclasses. To ensure that there are no direct instances of the class
Person, we label this class with the keyword {abstract}. The class Per-
son therefore becomes an abstract class and only its non-abstract sub-
classes can be instantiated. We will look at details of abstract classes in
Section 4.7 on page 72.

4.6 Generalizations 71

{abstract}
Person
Student
[~name
matNo address
dob
* ssNo
enrolls
1.%
Employee * 1
StudyProgram Faculty
<> acctNo isAssigned
1.%
A
*
Course
*
teaches
1.%

ResearchAssociate AdministrativeEmployee

The generalization relationship is also referred to as an “is a” rela-
tionship. For example, every student is a person (see Fig. 4.24). Every
research associate and every administrative employee is an employee
and, due to the transitivity of the generalization relationship, every ad-
ministrative employee is also a person. If, as in object-oriented pro-
gramming languages, we consider a class to be a type, subclasses and
superclasses are equivalent to subtypes and supertypes.

UML allows multiple inheritance, meaning that a class may have
multiple superclasses. For example, a tutor is both an employee of the
university and a student (see Fig. 4.25). Due to the transitivity of in-
heritance, single inheritance creates an inheritance hierarchy, whereas
multiple inheritance creates a (directed acyclic) inheritance graph.

Student Employee

Tutor

Figure 4.24
Class diagram with
generalization

Transitivity of the
generalization
relationship

Subtype and supertype

equivalent to

subclass and superclass

Multiple inheritance

Figure 4.25
Example of multiple
inheritance

Multiple classification

Generalization set

Abstract class

{abstract}
A

72 4 The Class Diagram

4.6.2 Classification

Classification refers to the “instanceOf” relationship between an ob-
ject and its class. In many object-oriented programming languages, an
object can usually only be the direct instance of precisely one class.
In contrast, UML allows multiple classification. With multiple classifi-
cation, an object can be an instance of multiple classes without these
classes having to be associated with one another in an inheritance rela-
tionship. In contrast to multiple inheritance, no new class inheriting the
characteristics of the superclasses involved is introduced.

For example, instances of Employee can be differentiated according
to their job, that is, whether they are researchers or administrators, and
whether they are financed directly via the university or via a project.
Multiple classification means that an object can be an instance of mul-
tiple classes whose characteristics the object then has. In Figure 4.26,
we have divided the generalization relationships into two groups. The
sets Job and Financing form generalization sets which group subclasses
according to multiple independent criteria. Generalization sets can be
described more precisely by the following constraints:

e Overlapping or disjoint: in an overlapping generalization set, an ob-
ject may be an instance of multiple subclasses simultaneously. In a
disjoint generalization set, an object may be an instance of a maxi-
mum of one subclass.

e (Complete or incomplete: in a complete generalization set, each in-
stance of the superclass must be an instance of at least one of the
subclasses. In incomplete generalization sets, this is not necessary.

This results in four combinations: {complete, overlapping}, {incom-
plete, overlapping}, {complete, disjoint}, and {incomplete, disjoint}. If none
of these constraints are specified explicitly, {incomplete, disjoint} is the
default value. Examples are shown in Figure 4.26: an employee must
belong to either the research or administrative personnel but not both.
The employee can be financed directly via the university, via a project,
via both, or in another, unspecified way, for example via a scholarship.

4.7 Abstract Classes vs. Interfaces

Classes that cannot be instantiated themselves are modeled as abstract
classes. These are classes for which there are no objects—only their
subclasses can be instantiated. Abstract classes are used exclusively to
highlight common characteristics of their subclasses and are therefore

4.7 Abstract Classes vs. Interfaces 73

ProjectEmployee UniversityEmployee

{incomplete, overlapping}

Financing

Employee

Job

{complete, disjoint}

ResearchAssociate AdministrativeEmployee

only useful in the context of generalization relationships. Operations of
abstract classes can also be labeled as abstract. An abstract operation
does not offer any implementation itself. However, it requires an imple-
mentation in the concrete subclasses. Operations that are not abstract
pass on their behavior to all subclasses.

Abstract classes and abstract operations are either written in italic
font or indicated by the specification of the keyword {abstract} before
their name (see Fig. 4.27). In manually produced class diagrams in par-
ticular, the use of the second notation alternative is recommended, as
italic handwriting is difficult to recognize.

{abstract}

Person
Person

In the example in Figure 4.28, the class Person is abstract. Hence,
there cannot be any instances of Person itself but there can be instances
of the specific subclasses Employee and Student.

Similarly to the abstract class, an interface also does not have an im-
plementation or any direct instances. An interface represents a contract.
The classes that enter into this contract, that is, the classes that imple-
ment the interface, obligate themselves to provide the behavior specified
by the interface. In contrast to the relationship between an abstract class
and its subclasses, an “is a” relationship between an interface and the
classes that implement it is not necessary. Operations of interfaces never
have an implementation.

Figure 4.26
Example of multiple
classification

Abstract operation

Figure 4.27
Notation for abstract
classes

Interface

Figure 4.28
Example of an interface

74 4 The Class Diagram

An interface is denoted like a class but with the additional keyword
«interface» before the name. A dashed inheritance arrow with a hollow,
triangular arrowhead from a class to an interface signifies that this class
implements the interface. A dashed arrow with an open head with the
keyword «use» expresses that a class uses an interface. Let us look at
the example from Figure 4.28. The classes Person and Course imple-
ment the interface Printable. The classes that implement Printable must
provide an operation print(). This operation is different for every class.
For a course, the name and the number of hours are printed; for a Per-
son, the name and address are printed. In the class Student, the operation
print() is specified again. This expresses that the Student extends the be-
havior of the operation print() inherited from Person. The method print()
is overwritten, meaning that the matriculation number is also printed.
For Employee this is not necessary, assuming that the behavior specified
for print() in Person is sufficient. The class Printer can now process each
class that implements the interface Printable. Thus, a specific print() can
be realized for each class and the class Printer remains unchanged.

«interface»

Printable l<— ﬁtis_ez__ Printer
+ print(): void
AR
/ \
/ \
/ \
/ \
Course {abstract}
Person
+ name: String + name: String
+ hours: int + address: String
_ _ + dob: Date
+ print(): void + ssNo: int
+ getCredits(): float
+ print(): void

Employee Student

+ acctNo: int + matNo: int

+ print(): void

4.8 Data Types 75

4.8 Data Types

Attributes, parameters, and return values of operations have a type that
specifies which concrete forms they may take. For example, the name of
a person has the type String. A type can be either a class or a data type.
Instances of data types are also referred to as their values. In contrast
to instances of classes (objects), values do not have their own identity.
If two values are identical, they cannot be differentiated. For example,
let us look at the class Book, whose instances are different copies of the
book UML@ Classroom. These copies can be uniquely identified and
differentiated even though their attributes have the same content. How-
ever, different occurrences of a value, for example the number 2, cannot
be differentiated. This differentiation becomes evident in the applica-
tion of the comparison operation ==, as provided by Java for example.
If we compare two variables of the type int (integer data type) and
both variables have the same value, the result of the comparison oper-
ation is true. If we compare two different objects with ==, the result is
false in general even if all attributes have the same values.

In UML, a data type is visualized in the same way as a class, with the
difference that the name of the data type is annotated with the additional
keyword «datatype» (see Fig. 4.29(b)). As the example in Figure 4.29(b)
shows, data types can have an internal structure in the form of attributes.
In UML, there are also two special forms of data types, namely primitive
data types and enumerations.

Primitive data types do not have any internal structure. In UML there
are four pre-defined primitive data types: Boolean, Integer, UnlimitedNat-
ural, and String. User-defined primitive data types are identified by the
specification of the keyword «primitive». Primitive data types may have
operations (see Fig. 4.29(a)) that are executed on their values.

Enumerations are data types whose values are defined in a list.
The notation is the same as for a class with the specific identification
«enumeration». In Figure 4.29(c), the enumeration AcademicDegree is
defined. This enumeration lists all academic degrees that are known in
our system. Therefore, attributes of the type AcademicDegree may take
the values bachelor, master, and phd. These values are called literals.

«primitive» «datatype» «enumeration»
Float Date AcademicDegree
round(): void day bachelor
month master
year phd

(a) (b) (c)

Class vs. data type

Data type

Primitive data type

Enumeration

Literal

Figure 4.29
Examples of data types

Information system of a
university

76 4 The Class Diagram

User-defined types are used as specified in the syntax description
of attributes and operations in Figure 4.5 (page 54) and in Figure 4.8
(page 57). Let us look at the type definitions from Figure 4.29 again.
These could be used in the following attribute definitions: weight: Float,
dob: Date, and title: AcademicDegree [x].

4.9 Creating a Class Diagram

UML describes the syntax and semantics of classes and their relation-
ships but not how the classes and relationships are constructed. Unfor-
tunately, it is not possible in principle to completely extract classes and
their characteristics from a natural language text automatically. How-
ever, there are guidelines for creating a class diagram. Nouns such as
person, employee, course, etc. often indicate classes. In contrast, names
of values such as Paul or object-oriented modeling and expressions that
indicate the relationships between potential classes are rarely classes.
Values of attributes are often expressed by adjectives or also by nouns
and operations often result from verbs. The following three aspects are
important: which operations can an object of a class execute? Which
events, to which the object must be able to react, can theoretically oc-
cur? And finally, which other events occur as a result? If the values of
an attribute can be derived from another attribute, for example, if the
age of a person can be calculated from their date of birth, it should be
identified as a derived attribute. Further, it is essential to consider not
only the current requirements but also the extensibility of the system.
As we now know how to derive a class diagram from a textual spec-
ification, we will do so for the following requirement specification:

e A university consists of multiple faculties which are composed of
various institutes. Each faculty and each institute has a name. An
address is known for each institute.

Each faculty is led by a dean, who is an employee of the university.
The total number of employees is known. Employees have a social
security number, a name, and an e-mail address. There is a distinction
between research and administrative personnel.

e Research associates are assigned to at least one institute. The field
of study of each research associate is known. Furthermore, research
associates can be involved in projects for a certain number of hours,
and the name, starting date, and end date of the projects are known.
Some research associates teach courses. They are called lecturers.

e Courses have a unique number (ID), a name, and a weekly duration
in hours.

4.9 Creating a Class Diagram 77

1. Identifying the classes

First, we must identify the elements that occur in the system Univer-
sity that identify the classes. These are shown in Figure 4.30.

Figure 4.30
Employee Identified classes
Faculty
Administrative Resea.rch Institute
Employee Associate
Course Project
Lecturer

As we can see, University is not a separate class. We have not for-
gotten it—we have intentionally not included it. We are using the
class diagram to describe the system University, hence the instance
of our model contains those objects that occur within a university,
for example, the Vienna University of Technology. If we included
a class University which itself consists of other classes from Fig-
ure 4.30, we could model multiple university information systems
simultaneously. Our model would then also describe, for example,
the Johannes Kepler University Linz.

2. Identifying the attributes

We can now describe our classes in more detail using attributes. The
classes and their attributes are shown in Figure 4.31.

We have defined meaningful data types for our attributes even though
these are not included in the specification. We also set the visibility
of all attributes to public so that in this phase, we do not have to think
about which attributes are visible from the outside and which are
not. The attribute counter of the class Employee is defined as a class
attribute as its values do not belong to an instance. This attribute is
increased when an instance of the class Employee is created.

Figure 4.31

Classes and their attributes

78 4 The Class Diagram

Employee

- Faculty
+ ssNo: int

+ name: String
+ email: String
+ counter: int

+ name: String

Administrative Resea.rch Institute
Employee Associate
+ fieldOfStudy: String + name: String
+ address: String
Course Project
Lecturer
+ name: String + name: String
+id: int + start: Date
+ hours: float + end: Date

3. Identifying the relationships between classes

Classes can be linked with one another in three ways. They can be in
a sub-/superclass relationship (generalization), be related by means
of an aggregation, or linked via associations.

4.9.1 Generalizations

The following sentences strongly indicate a generalization relationship:
“There is a distinction between research and administrative personnel.”
and “Some research associates teach courses. Then they are called lec-
turers.” We model these generalization relationships as shown in Fig-
ure 4.32. As every employee of a university belongs to either the re-
search or administrative personnel, we can set the class Employee to
abstract.

4.9.2 Associations and Aggregations

To complete the class diagram, we need to add the associations and ag-
gregations and their corresponding multiplicities. The classes Lecturer
and Course are linked by means of the association teaches. An employee
leads the faculty. Here the employee takes the role of a dean. A faculty

4.9 Creating a Class Diagram 79

{abstract}
Employee

+ ssNo: int

+ name: String
+ email: String
+ counter: int

Administrative Research
Employee Associate

+ fieldOfStudy: String

Lecturer

consists of multiple institutes. We assume that there is an existence de-
pendency which we model with a composition. Research associates are
assigned to an institute, meaning they are part of an institute. Using
a composition here would be incorrect as there is no existence depen-
dency between instances of Employee and Institute. However, a shared
aggregation is possible in order to represent the parts-whole relation-
ship explicitly. Finally, we have the involvement of research associates
in projects, whereby we know the number of hours of participation. For
this we need the association class Participation. This association class
further details the relationship between the project and the research as-
sociate with the number of hours. Figure 4.33 shows the complete class
diagram for the given task.

Note that the resulting model is not unique even for such small ex-
amples; it depends on the one hand on the intended application, and on
the other hand on the style of the modeler. For example, if we had cre-
ated the model with the intention of generating code from it, we would
perhaps have designed the interfaces more carefully and specified more
differentiated visibilities. It is a matter of taste that Lecturer is a separate
class but dean is a role. We could also have specified Lecturer as a role
at the end of the association teaches which would have been defined
between the classes ResearchAssociate and Course.

Figure 4.32
Identified generalization
relationships

Figure 4.33

Class diagram of the in-
formation system of a
university

Forward engineering

Reverse engineering

80 4 The Class Diagram

{abstract}
Employee

Facult
+ ssNo: int 1 leads » 0..1 y

+name: String | *dean
+ email: String

+ name: String

+ counter: int 1
1.%
Administrative Research Institute
Employee Associate 1.% 1.%
+ fieldOfStudy: String + name: String
+ address: String

Participation

7+ hours: int
Lecturer
1.% ¥
Course teaches Project
1.% v
+ name: String + name: String
+id: int + start: Date
+ hours: float + end: Date

4.10 Code Generation

Class diagrams are often created with the intention of implementing
the modeled elements in an object-oriented programming language. As
many of the concepts of the class diagram are available in identical or
similar form in object-oriented programming languages such as Java,
C#, or C++, in many cases a translation can take place automatically
and requires only minimal manual intervention. The class diagram is
also suitable for documenting existing program code, with the advan-
tage that the relationships between classes are represented graphically.
There are a number of tools for reverse engineering program code into
class diagrams automatically.

Data modeling also involves similar concepts to those of the class
diagram. For example, here the entity-relationship diagram (ER dia-
gram) [14] is used—with the exception of different notation, it is very
similar to the class diagram. Both diagrams show the elements (classes
or entities) of a system and the relationships (associations or relations)

4.10 Code Generation 81

between them. In both cases, these elements are characterized by their
attributes. Considerable differences are visible if we compare the focus
of the two types of diagrams. While the ER diagram describes the el-
ements of a database, the class diagram shows how to implement the
modeled system in an object-oriented programming language. Thus, in
the ER diagram, we can define key attributes that are required to iden-
tify entries in a table. This is not possible directly in a class diagram but
it is also not necessary, as each object is identified by a unique object
ID. In contrast, the specification of behavior, which is possible in the
class diagram through operations, is not supported in the ER diagram.
Therefore, the recommendation is to use the diagram type that is best
for the problem in question. The following example again illustrates the
connection between a class diagram (see Fig. 4.34) and the Java code
generated from it (see Fig. 4.35).

{abstract}
UniversityMember «enumeration»

+ firstName: String ESemester
+ lastName: String winter

+ ssNo: int summer

«enumeration»
ERole
lecturer
Employee tutor
Student examiner
- acctNo: int
+ matNo: int
+ getAcctNo(): int
* \ +student
+/ %
~_ Support
+ role: ERole
+cC +cE / % + hours: float
CourseExecution
* 1 Course

+ year: int
+ semester: ESemester

+cour: .
COUrse | 4 courseNo: int

Many elements can be translated 1:1. Both abstract and concrete
classes are adopted directly in the code with their attributes and opera-
tions. In the code, associations are represented as attributes. Note that
the multiplicity of an association end is reflected in the type of the at-

Figure 4.34
Class diagram from which
code is to be generated

82 4 The Class Diagram

tribute. If the multiplicity is greater than one, we can use, for example,
an array, as we did for the courses. Instead of arrays we could also use
generic data types, for example the Java data type Collection; in
contrast to arrays, with generic data types we do not have to know the
size at initialization [4].

We have to make sure that we implement the navigation directions
correctly. The navigation information provided in terms of arrowheads
at the association ends tells us which class has to know about which
other class—and this is realized via the attributes that model the associ-
ation ends.

Some concepts, such as association classes or n-ary associations, do
not exist directly in common programming languages such as Java. We
thus have to consider how to simulate these concepts. Our example con-
tains the association class Support. In the code this is implemented as a
hash table. A hash table is a data structure that contains elements in the
form (key, data). If the key (which must be unique) is known, the related
data can be found efficiently.

Up to this point we have been able to describe the structure of ele-
ments and their relationships. We were not able to express behavior. In
the above example we had only one operation, getAcctNo(), which re-
turns the account number of the employee. The content of the method
body was generated automatically as it is a getter method that encap-
sulates the access to a variable of the same name. For other operations,
for example, operations that were intended to calculate something, the
implementation cannot be derived automatically. UML offers other dia-
grams for modeling behavior and we will introduce these in the follow-
ing chapters. To complete this chapter, Table 4.2 summarizes the most
important concepts of the class and object diagrams.

4.10 Code Generation 83

abstract class UniversityMember {
public String firstName;
public String lastName;
public int ssNoj;

class Student extends UniversityMember ({
public int matNo;
public CourseExecution [] cC; // completed c.

class Employee extends UniversityMember {
private int acctNo;
public CourseExecution [] cE; // supported c.
public int getAcctNo { return acctNo; }
}
class CourseExecution {
public int year;
public ESemester semester;
public Student [] student;
public Course course;
public Hashtable support;
// Key: employee
// Value: (role, hours)

class Course {
public int courseNo;

Enumeration ESemester {
winter;
summer;

Enumeration ERole {
lecturer;
tutor;
examiner;

Figure 4.35

Java code that can be gen-
erated automatically from
Fig. 4.34

Table 4.2
Notation elements of the

class and object diagrams

84

4 The Class Diagram

Name Notation Description
A
-al: T Description of the structure and be-
Class -a2: T2 . .
, havior of a set of objects
+ 01(): void
+ 02(): void

Abstract class

]

{abstract}

Class that cannot be instantiated

Association

w

Relationship between classes: navi-
gability unspecified (a), navigable in
both directions (b), not navigable in
one direction (c)

N-ary association

Relationship between N (in this case
3) classes

Association class

S|l [1=

More detailed description of an asso-
ciation

xor relationship

w

frorh,

’

(g)

An object of A is in a relationship
with an object of B or with an object
of C but not with both

Strong aggregation

Existence-dependent parts-whole re-
lationship (A is part of B; if B is

A l—‘I B
composition deleted, related instances of A are also
deleted)
Parts-whole relationship (A is part of
Shared aggregation A |—<>| B | |B; if B is deleted, related instances of
A need not be deleted)
. Inheritance relationship (A inherits
A B
Generalization |—|>| from B)
Object Instance of a class
Link ol |—| 02 | |Relationship between objects

