
Chapter 3

The Use Case Diagram

The use case diagram allows us to describe the possible usage scenar- Use case diagram

ios (use cases) that a system is developed for. It expresses what a system
should do but does not address any realization details such as data struc-
tures, algorithms, etc. These details are covered by other diagrams such
as the class diagram (see Chapter 4) or the interaction diagrams (see
Chapter 6). The use case diagram also models which user of the system
uses which functionality, i.e., it expresses who will actually work with
the system to be built.

The use case is a fundamental concept of many object-oriented de-
velopment methods. It is applied during the entire analysis and design
process. Use cases represent what the customer wants the system to do,
that is, the customer’s requirements of the system. At a very high ab-
straction level, the use cases show what the future system is for. A use
case diagram can also be used to document the functionality of an ex-
isting system and to record retrospectively which users are permitted to
use which functionality.

Specifically, we can employ a use case diagram to answer the fol-
lowing questions:

1. What is being described? (The system.)
2. Who interacts with the system? (The actors.)
3. What can the actors do? (The use cases.)

The use case diagram provides only a few language elements. At first
glance, this diagram seems to be extremely simple to learn and use. In
practice, however, the use case diagram is an extremely underestimated
diagram. The content of a use case diagram express the expectations that
the customer has of the system to be developed. The diagram documents
the requirements the system should fulfill. This is essential for a detailed
technical design. If use cases are forgotten or specified imprecisely or

23© Springer International Publishing Switzerland 2015
M. Seidl et al., UML @ Classroom, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-12742-2_ 3

24 3 The Use Case Diagram

incorrectly, in some circumstances the consequences can be extremely
serious: the development and maintenance costs increase, the users are
dissatisfied, etc. As a consequence, the system is used less successfully
and the investments made in the development of the system do not bring
the expected returns. Even though software engineering and methods of
requirements analysis are not the subject of this book, we briefly explain
why it is essential to create use cases very carefully. Furthermore, we
discuss where errors are often made and how these can be avoided with
a systematic approach. For a detailed introduction to these topics, see
for example [3, 45].

3.1 Use Cases

A use case describes functionality expected from the system to be de-Use case

A
veloped. It encompasses a number of functions that are executed when
using this system. A use case provides a tangible benefit for one or more
actors that communicate with this use case. The use case diagram does
not cover the internal structure and the actual implementation of a use
case. In general, a use case is triggered either by invocation of an actor
or by a trigger event, in short, a trigger. An example of a trigger is thatTrigger

the semester has ended and hence the use case Issue certificate must be
executed.

Use cases are determined by collecting customer wishes and ana-
lyzing problems specified in natural language when these are the basis
for the requirements analysis. However, use cases can also be used to
document the functionality that a system offers. A use case is usually
represented as an ellipse. The name of the use case is specified directly
in or directly beneath the ellipse. Alternatively, a use case can be rep-
resented by a rectangle that contains the name of the use case in the
center and a small ellipse in the top right-hand corner. The different no-
tation alternatives for the use case Query student data are illustrated in
Figure 3.1. The alternatives are all equally valid, but the first alterna-
tive, the ellipse that contains the name of the use case, is the one most
commonly used.

Figure 3.1
Notation alternatives for
use cases

Query
student data

Query
student data

Query
student data

3.2 Actors 25

The set of all use cases together describes the functionality that a
software system provides. The use cases are generally grouped within a
rectangle. This rectangle symbolizes the boundaries of the system to be System

described. The example in Figure 3.2 shows the Student Administration

system, which offers three use cases: (1) Query student data, (2) Issue

certificate, and (3) Announce exam. These use cases may be triggered by
the actor Professor.

Student Administration

Query
student data

Issue
certificate

Announce
exam

Professor

Figure 3.2
Representation of system
boundaries

3.2 Actors

To describe a system completely, it is essential to document not only
what the system can do but also who actually works and interacts with
the system. In the use case diagram, actors always interact with the sys- Actor

X

tem in the context of their use cases, that is, the use cases with which
they are associated. The example in Figure 3.2 contains only the actor
Professor, who can query student data, announce exams, and issue cer-
tificates. Actors are represented by stick figures, rectangles (containing
the additional information «actor»), or by a freely definable symbol. The
notation alternatives are shown in Figure 3.3. These three notation al-
ternatives are all equally valid. As we can see from this example, actors
can be human (e.g., student or professor) or non-human (e.g., e-mail
server). The symbols used to represent the actors in a specific use case
diagram depend on the person creating the model or the tool used. Note
in particular that non-human actors can also be portrayed as stick fig-
ures, even if this seems counterintuitive.

26 3 The Use Case Diagram

Figure 3.3
Notation alternatives for
actors « actor»

Professor
Student

E-Mail Server

An actor interacts with the system by using the system as an ac-

tive actor, meaning that the actor initiates the execution of use cases;Types of actors:

• Human/non-human
• Active/passive
• Primary/

secondary

alternatively, the interaction involves the actor being used by the sys-
tem, meaning that the actor is a passive actor providing functionality
for the execution of use cases. In example (a) in Figure 3.4, the actor
Professor is an active actor, whereas the actor E-Mail Server is passive.
However, both are required for the execution of the use case Inform stu-

dent. Furthermore, use case diagrams can also contain both primary and
secondary actors, also shown in this example. A primary actor takes an
actual benefit from the execution of the use case (in our example this
is the Professor), whereas the the secondary actor E-Mail Server receives
no direct benefit from the execution of the use case. As we can see in
example (b) in Figure 3.4, the secondary actor does not necessarily have
to be passive. Both the Professor and the Student are actively involved in
the execution of the use case Exam, whereby the main beneficiary is the
Student. In contrast, the Professor has a lower benefit from the exam but
is necessary for the execution of the use case. Graphically, there is no
differentiation between primary and secondary actors, between active
and passive actors, and between human and non-human actors.

Figure 3.4
Examples of actors

(a) (b)

University

Exam
Student

Professor

Student Administration

Inform
student

E-Mail Server

Professor

An actor is always clearly outside the system, i.e., a user is never part
of the system and is therefore never implemented. Data about the user,
however, can be available within the system and can be represented, for
example, by a class in a class diagram (see Chapter 4). Sometimes it is
difficult to decide whether an element is part of the system to be imple-

3.3 Associations 27

mented or serves as an actor. In example (a) in Figure 3.4, the E-Mail

Server is an actor—it is not part of the system but it is necessary for the
execution of the use case Inform student. However, if no external server
is required to execute this use case because the student administration
system implements the e-mail functionality itself or has its own server,
the E-Mail Server is no longer an actor. In that case, only the Professor is
required to inform students about various news items.

3.3 Associations

In the examples in Figure 3.4, we connected the actors with use cases via
solid lines without explaining this in more detail. An actor is connected
with the use cases via associations which express that the actor com- Association

A

X

municates with the system and uses a certain functionality. Every actor
must communicate with at least one use case. Otherwise, we would have
an actor that does not interact with the system. In the same way, every
use case must be in a relationship with at least one actor. If this were
not the case, we would have modeled a functionality that is not used by
anyone and is therefore irrelevant.

An association is always binary, meaning that it is always specified
between one use case and one actor. Multiplicities may be specified
for the association ends. If a multiplicity greater than 1 is specified for
the actor’s association end, this means that more than one instance of
an actor is involved in the execution of the use case. If we look at the
example in Figure 3.5, one to three students and precisely one assistant
is involved in the execution of the use case Conduct oral exam. If no
multiplicity is specified for the actor’s association end, 1 is assumed as
the default value. The multiplicity at the use case’s association end is
mostly unrestricted and is therefore only rarely specified explicitly.

1..3

Laboratory Assignment

Conduct
oral exam

Assistant

Student

Figure 3.5
Multiplicities in
associations

28 3 The Use Case Diagram

Actors do not represent a specific user—they represent roles thatRole

users adopt. If a user has adopted the respective role, this user is autho-
rized to execute the use cases associated with this role. Specific users
can adopt and set aside multiple roles simultaneously. For example, a
person can be involved in the submission of a certain assignment as an
assistant and in another assignment as a student. The role concept is
also used in other types of UML diagrams, such as the class diagram
(see Chapter 4), the sequence diagram (see Chapter 6), and the activity
diagram (see Chapter 7).

3.4 Relationships between Actors

Actors often have common properties and some use cases can be usedSynonyms:

• Generalization
• Inheritance

Generalization for actors

X

Y

by various actors. For example, it is possible that not only professors
but also assistants (i.e., the entire research personnel) are permitted to
view student data. To express this, actors may be depicted in an inher-

itance relationship (generalization) with one another. When an actor Y

(sub-actor) inherits from an actor X (super-actor), Y is involved with all
use cases with which X is involved. In simple terms, generalization ex-
presses an “is a” relationship. It is represented with a line from the sub-

Figure 3.6
Example of generalization
for actors

Student Administration

Query
student data

Issue
certificate

Create
course

0..1

Professor

Research
Associate

Assistant

Publish
task

3.4 Relationships between Actors 29

actor to the super-actor with a large triangular arrowhead at the super-
actor end. In the example in Figure 3.6, the actors Professor and Assis-

tant inherit from the actor Research Associate, which means that every
professor and every assistant is a research associate. Every research as-
sociate can execute the use case Query student data. Only professors can
create a new course (use case Create course); in contrast, tasks can only
be published by assistants (use case Publish task). To execute the use
case Issue certificate in Figure 3.6, an actor Professor is required; in ad-
dition, an actor Assistant can be involved optionally, which is expressed
by the multiplicity 0..1.

There is a great difference between two actors participating in a use
case themselves and two actors having a common super-actor that par-
ticipates in the use case. In the first case, both actors must participate in
the use case (see Fig. 3.7(a)); in the second case, each of them inherits
the association. Then each actor participates in the use case individually
(see Fig. 3.7(b)).

Student Administration

Query
student data

Professor

Assistant

(a) (b)

Student Administration

Query
student data

{abstract}
Research
Associate

Professor Assistant

Figure 3.7
Example with and without
generalization

If there is no instance of an actor, this actor can be labeled with the
keyword {abstract}. Alternatively, the names of abstract actors can be Abstract actor

represented in italic font. The actor Research Associate in Figure 3.7(b)
is an example of an abstract actor. It is required to express that either a
Professor or an Assistant is involved in the use case Query student data.
The use of abstract actors only makes sense in the context of an inheri-
tance relationship: the common properties of the sub-actors are grouped
and described at one point, namely with the common, abstract super-
actor.

Generalization is a fundamental concept of object orientation and
can be applied to many different language elements of UML. For a more
detailed introduction to generalization, see Chapter 4.

30 3 The Use Case Diagram

3.5 Relationships between Use Cases

Up to this point, we have learned only about relationships between use
cases and actors (associations) and between actors themselves (general-
ization of actors). Use cases can also be in a relationship with other use
cases. Here we differentiate between «include» relationships, «extend»

relationships, and generalizations of use cases.

Figure 3.8
Example of «include» and
«extend»

Student Administration

Reserve
lecture hall

Announce
lecture

Assign
lecturer

« include»

« extend»

Professor

If a use case A includes a use case B, represented as a dashed arrow«include»

B

A

« include»

from A to B labeled with the keyword «include» , the behavior of B is
integrated into the behavior of A. Here, A is referred to as the base use

case and B as the included use case. The base use case always requires
the behavior of the included use case to be able to offer its functional-
ity. In contrast, the included use case can be executed on its own. The
use of «include» is analogous to calling a subroutine in a procedural
programming language. In the use case diagram in Figure 3.8, the use
cases Announce lecture and Assign lecturer are in an «include» relation-
ship, whereby Announce lecture is the base use case. Therefore, when-
ever a new lecture is announced, the use case Assign lecturer must also
be executed. The actor Professor is involved in the execution of both use
cases. Further lecturers can also be assigned to an existing lecture as the
included use case can be executed independently of the base use case.
One use case may include multiple other use cases. One use case may
also be included by multiple different use cases. In such situations, it is
important to ensure that no cycle arises.

If a use case B is in an «extend» relationship with a use case A, then
A can use the behavior of B but does not have to. Use case B can there-
fore be activated by A in order to insert the behavior of B in A. Here,

3.5 Relationships between Use Cases 31

A is again referred to as the base use case and B as the extending use

case. An «extend» relationship is shown with a dashed arrow from the «extend»

B

A
« extend»

extending use case B to the base use case A. Both use cases can also be
executed independently of one another. If we look at the example in Fig-
ure 3.8, the two use cases Announce lecture and Reserve lecture hall are
in an «extend» relationship. When a new lecture is announced, it is pos-
sible (but not mandatory) to reserve a lecture hall. A use case can act as
an extending use case several times or can itself be extended by several
use cases. Again, no cycles may arise. Note that the arrow indicating
an «extend» relationship points towards the base use case, whereas the
arrow indicating an «include» relationship originates from the base use
case and points towards the included use case.

A condition that must be fulfilled for the base use case to insert the Condition

behavior of the extending use case can be specified for every «extend»

relationship. The condition is specified, within curly brackets, in a note
that is connected with the corresponding «extend» relationship. A con-
dition is indicated by the preceding keyword Condition followed by a
colon. Two examples are shown in Figure 3.9. Within the context of the
use case Announce lecture, a lecture hall can only be reserved if it is free.
Furthermore, an exam can only be created if the required data has been
entered.

By using extension points, you can define the point at which the be- Extension point

havior of the extending use cases must be inserted in the base use case.
The extension points are written directly within the use case, as illus-
trated in the use case Announce lecture in the example in Figure 3.9.
Within the use case symbol, the extension points have a separate sec-

Student Administration

Reserve
lecture hall

Announce lecture

Announce
exam

Condition:
 {Lecture hall free}
Extension point:
 Select lecture hall

Condition:
 {Data entered}
Extension point:
 Enter exam

extension points:
Enter exam

Select lecture hall
Professor

« extend»

« extend»

Figure 3.9
Example of extension
points and conditions

32 3 The Use Case Diagram

tion that is identified by the keyword extension points. If a use case has
multiple extension points, these can be assigned to the corresponding
«extend» relationship via specification in a note similarly to a condition.

In the same way as for actors, generalization is also possible betweenGeneralization for use
cases

B

A

use cases. Thus, common properties and common behavior of different
use cases can be grouped in a parent use case. If a use case A generalizes
a use case B, B inherits the behavior of A, which B can either extend or
overwrite. Then, B also inherits all relationships from A. Therefore, B

adopts the basic functionality of A but decides itself what part of A is
executed or changed. If a use case is labeled {abstract}, it cannot be ex-
ecuted directly; only the specific use cases that inherit from the abstract
use case are executable.

The use case diagram in Figure 3.10 shows an example of the gen-
eralization of use cases. The abstract use case Announce event passes
on its properties and behavior to the use cases Announce lecture and An-

nounce talk. As a result of an «include» relationship, both use cases must
execute the behavior of the use case Assign lecturer. When a lecture is
announced, an exam can also be announced at the same time. Both use
cases inherit the relationship from the use case Announce event to the
actor Professor. Thus, all use cases are connected to at least one actor,
the prerequisite previously stipulated for correct use case diagrams.

Figure 3.10
Example of generalization
of use cases

Student Administration

Assign
lecturer

{abstract}
Announce

event

Announce
exam

« include»

Announce
talk

Announce
lecture

Professor

« e
xt

en
d»

3.6 Examples of Relationships 33

Generalization allows us to group the common features of the two
use cases Announce lecture and Announce talk. This means that we do
not have to model both the «include» relationship and the association
with the professor twice.

3.6 Examples of Relationships

To explain again explicitly how the different relationship types in a use
case diagram interact with one another, let us take a look at the use case
diagram from Figure 3.11 and discuss some interesting cases that occur
here.

J

O

L

N

M

B C

F

H

E

A

G

ID

S

« extend»

« extend»« include»

« include»

Figure 3.11
Examples of relationships
in a use case diagram

• The use case A includes the use cases E and D. An actor O is involved
in all three use cases. There is no specification of whether this is the
same user or different users, that is, different instances of O.

• The use case H inherits from the use case C. As use case C is executed
by the actor L, an actor L must also be involved in the execution of H.
The actors N and M inherit from L. Therefore, both use cases C and
H can also be executed by an actor M or N.

34 3 The Use Case Diagram

• The use case J inherits from the use case B. As a result of the inheri-
tance relationship, an actor O is involved in the execution of use case
J. However, an association with O is also modeled for J directly. The
consequence of this is that two actors in the role O are involved in
the execution of J. Note that these two actors can coincide.

• The use case F inherits from the use case G. As a result of the in-
heritance relationship, an actor N is involved in the execution of use
case F. For F, an association with the actor L is also modeled directly.
Therefore, an actor N and, due to the inheritance relationship of the
actors L, N, and M, either an actor L or an actor M or an additional ac-
tor N is involved in the execution of F. If two actors N are involved,
they may coincide.

• The use case I extends the use case F. As use case F inherits from use
case G and as I extends use case G, this relationship is passed on to F.
If G and I were in an «include» relationship, this relationship would
also be passed on to F in the same way.

• The use case J extends the use case H. This is as a result of the inher-
itance relationships from B to J and from C to H.

3.7 Creating a Use Case Diagram

So, how do you create a use case diagram? First you must identify ac-
tors and use cases and then place them in relationships with one another.
You then describe the use cases in detail. At first glance, this diagram
seems to be simple due to the low number of concepts involved. But in
fact, use case diagrams are often created incorrectly with a lot of errors.
Therefore, here we take a brief look at the principles of creating use
cases. For details, see the extensive literature on requirements engineer-
ing, for example [16, 30, 40]. We then explain some typical pitfalls to
be avoided when modeling use case diagrams.

3.7.1 Identifying Actors and Use Cases

According to [30], there are two ways to identify use cases for prospec-
tive system design:

1. Analysis of requirements documents
2. Analysis of the expectations of future users

Requirements documents are generally natural language specifications
that explain what the customer expects from a system. They should doc-

3.7 Creating a Use Case Diagram 35

ument relatively precisely who will use the system and how they will
use it. If you follow the second approach for finding use cases, you
must first identify the future users—that is, the actors. To identify the
actors that appear in a use case diagram, you must answer the following
questions:

• Who uses the main use cases? Questions for identifying

actors• Who needs support for their daily work?
• Who is responsible for system administration?
• What are the external devices/(software) systems with which the sys-

tem must communicate?
• Who has an interest in the results of the system?

Once you know the actors, you can derive the use cases by asking
the following questions about the actors [27]:

• What are the main tasks that an actor must perform? Questions for identifying

use cases• Does an actor want to query or even modify information contained
in the system?

• Does an actor want to inform the system about changes in other sys-
tems?

• Should an actor be informed about unexpected events within the sys-
tem?

In many cases, you model use cases iteratively and incrementally. In Iterative and incremental

determination of use

cases

doing so, you often start with the “top level” requirements that reflect
the business objectives to be pursued with the software. You then con-
tinue to refine them until, at a technical level, you have specified what
the system should be able to do. For example, a “top level” requirement
for a university administration system could be that the system can be
used for student administration. If we refine this requirement, we de-
fine that new students should be able to register at the university and
enroll for studies, that the students’ grades for different courses should
be stored, etc.

3.7.2 Describing Use Cases

To ensure that even large use case diagrams remain clear, it is extremely
important to select short, concise names for the use cases. When situ-
ations arise in which the intention behind the use case and its inter-
pretation are not clear, you must also describe the use cases. Again, it
is important to ensure that you describe the use cases clearly and con-
cisely, as otherwise there is a risk that readers will only skim over the
document.

36 3 The Use Case Diagram

A generally recognized guideline for the length of use case descrip-Structured approach to

describing use cases tions is approx. 1–2 pages per use case. In [15], Alistair Cockburn
presents a structured approach for the description of use cases that con-
tains the following information:

• Name
• Short description
• Precondition: prerequisite for successful execution
• Postcondition: system state after successful execution
• Error situations: errors relevant to the problem domain
• System state on the occurrence of an error
• Actors that communicate with the use case
• Trigger: events which initiate/start the use case
• Standard process: individual steps to be taken
• Alternative processes: deviations from the standard process

Table 3.1
Use case description for
Reserve lecture hall

Name: Reserve lecture hall
Short description: An employee reserves a lecture hall at the university for

an event.
Precondition: The employee is authorized to reserve lecture halls.

Employee is logged in to the system.
Postcondition: A lecture hall is reserved.
Error situations: There is no free lecture hall.
System state in the event
of an error:

The employee has not reserved a lecture hall.

Actors: Employee
Trigger: Employee requires a lecture hall.
Standard process: (1) Employee selects the lecture hall.

(2) Employee selects the date.
(3) System confirms that the lecture hall is free.
(4) Employee confirms the reservation.

Alternative processes: (3’) Lecture hall is not free.
(4’) System proposes an alternative lecture hall.
(5’) Employee selects the alternative lecture hall and
confirms the reservation.

Table 3.1 contains the description of the use case Reserve lecture hall

in a student administration system. The description is extremely sim-
plified but fully sufficient for our purposes. The standard process and
the alternative process could be refined further or other error situations
and alternative processes could be considered. For example, it could
be possible to reserve a lecture hall where an event is already taking
place—this makes sense if the event is an exam that could be held in
the lecture hall along with another exam, meaning that fewer exam su-
pervisors are required. In a real project, the details would come from
the requirements and wishes of the customers.

3.7 Creating a Use Case Diagram 37

3.7.3 Pitfalls

Unfortunately, errors are often made when creating use case diagrams.
Six examples of typical types of errors are discussed below. For a more
detailed treatment of this topic, see [39].

Error 1: Modeling processes

Even if it is often very tempting to model entire (business) processes or
workflows in a use case diagram, this is an incorrect use of the diagram.
Let us assume we are modeling the system Student Office (see the final
example of this chapter on page 42). If a student uses the function Collect

certificate, the student must first be notified that the certificate is ready
for collection in the student office. Naturally, the lecturer must have sent
the certificate to the student office, i.e., the certificate has been issued.
The use cases Collect certificate, Send notification, and Issue certificate

may be connected chronologically but this should not be represented
in a use case diagram. It is therefore incorrect to relate these use cases
to one another using «include» or «extend» relationships as shown in
Figure 3.12. The functionality that one of these use cases offers is not
part of the functionality that another use case offers, hence the use cases
must be used independently of one another.

Collect
certificate

« include» « include»Send
notification

Issue
certificate

Figure 3.12
Incorrect excerpt of a use
case diagram: modeling
processes

Error 2: Setting system boundaries incorrectly

When modeling a use case diagram, you must consider very carefully
where to draw the boundaries of the diagram. As already mentioned,
this is often not clear. Actors are always outside the system boundaries:
if they are to be located within the system, they are part of the system
and therefore they must not be modeled as actors. In Figure 3.13, the
Employee is depicted within the boundaries of the system Student Admin-

istration. Of course the student administration system includes employ-
ees. However, as we want to create a use case diagram of this system,

38 3 The Use Case Diagram

we must consider whether we want to view these employees as actors
or as part of the student administration system. If they are a part of the
system, they must not be modeled as actors. In that case, some other
entity outside the system should be an actor. If they are not part of the
system but are necessary for the execution of the use cases, they must
be represented as actors—outside the system boundaries.

Figure 3.13
Incorrect excerpt of a use
case diagram: incorrect
system boundaries Student Administration

Issue
information

Employee Student

Error 3: Mixing abstraction levels

When identifying use cases, you must always ensure that they are lo-
cated on the same abstraction level. Avoid representing “top level” use
cases with technically oriented use cases in the same diagram, as is the
case in Figure 3.14. In this example, the management of student data
and the selection of a printer, which is a technical feature of the system,
are shown together. To avoid this type of error, you should therefore
proceed iteratively. First create a use case diagram with use cases that
are based on the business objectives (in our example, management of
student data). Then refine these use cases down to the technical require-
ments (selecting a printer).

3.7 Creating a Use Case Diagram 39

Student Administration

Manage
student data

Select printer

Employee

Figure 3.14
Incorrect excerpt of a use
case diagram: mixing ab-
straction levels

Error 4: Functional decomposition

Use cases—even included or extending use cases—can always be exe-
cuted independently. If they can only be executed within the scope of
another use case and not independently, they are not use cases and must
not be depicted as such. Their functionality must then be covered in the
description of the use case that uses them. In Figure 3.15(a), the use
case Issue certificate is broken down into the individual subfunctions
necessary to execute the use case. These subfunctions are modeled as
use cases even though sometimes they are not meaningful independent
use cases, such as Enter data.

The use case Log in is also not a functionality that is part of Issue

certificate. In fact, it is a precondition that the user must be logged in
with sufficient authorizations for being able to execute this use case.
Therefore, a reduced use case diagram, as shown in Figure 3.15(b), is
sufficient. The other information specified in Figure 3.15(a) must be
specified in the use case description.

Error 5: Incorrect associations

If a use case is associated with two actors, this does not mean that either
one or the other actor is involved in the execution of the use case: it
means that both are necessary for its execution. In the use case diagram
in Figure 3.16(a), the actors Assistant and Professor are involved in the
execution of the use case Issue information, which is not the intention. To
resolve this problem, we can introduce a new, abstract actor Research

Associate from which the two actors Assistant and Professor inherit. The
actor Employee is now connected with the use case Issue information (see
Fig. 3.16(b)).

40 3 The Use Case Diagram

Figure 3.15
Incorrect excerpt of a use
case diagram: functional
decomposition

(b)

(a)

« include»

Log out

« include»

« include»

Send data

Enter data

Log in

Student Administration

Lecturer

Issue
certificate

«
in

cl
u
d
e
»

Lecturer

Student Administration

Issue
certificate

Error 6: Modeling redundant use cases

When modeling use cases, it is very tempting to create a separate use
case for each possible situation. For example, in the use case diagram in
Figure 3.17(a), we have modeled separate use cases for creating, updat-
ing, and deleting courses. This shows the different options available for
editing a course in the system. In such a small use case diagram as that
shown in Figure 3.17(a), it is not a problem to show the differentiations
at such a detailed level.

3.7 Creating a Use Case Diagram 41

Manage
student data

Issue
information

Assistant

Create course

Professor

Student Administration

(a) (b)

{abstract}
Research Associate

Manage
student data

Issue
information

Create course

Assistant

Professor

Student Administration
Figure 3.16
Incorrect excerpt of a use
case diagram: incorrect
associations

However, when modeling a real application, the diagram would very
quickly become unmanageable. To counteract this, it might make sense
to group use cases that have the same objective, namely the management
of a course. This is reflected in Figure 3.17(b). The individual steps are
then specified in the description of the standard process.

(a)

Delete
course

Student Administration

Update
course

Create
course

Research
Associate

(b)

Manage
course

Student Administration

Research
Associate

Figure 3.17
Modeling redundant use
cases

42 3 The Use Case Diagram

3.7.4 A Final Example

To conclude this chapter, we create a use case diagram that describes the
functionality of the information system of a student office in accordanceInformation system of

the student office of a

university

with the following specification:

• Many important administrative activities of a university are pro-
cessed by the student office. Students can register for studies (ma-
triculation), enroll, and withdraw from studies here. Matriculation
involves enrolling, that is, registering for studies.

• Students receive their certificates from the student office. The certifi-
cates are printed out by an employee. Lecturers send grading infor-
mation to the student office. The notification system then informs the
students automatically that a certificate has been issued.

• There is a differentiation between two types of employees in the
student office: a) those that are exclusively occupied with the ad-
ministration of student data (service employee, or ServEmp), and b)
those that fulfill the remaining tasks (administration employee, or Ad-

minEmp), whereas all employees (ServEmpand AdminEmp) can issue
information.

• Administration employees issue certificates when the students come
to collect them. Administration employees also create courses. When
creating courses, they can reserve lecture halls.

To create a use case diagram from this simplified specification, we
first identify the actors and their relationships to one another. We then
determine the use cases and their relationships to one another. Finally,
we associate the actors with their use cases.

1. Identifying actors

If we look at the textual specification, we can identify five potential
actors: Lecturer, Student, employees of the types ServEmp and Ad-

minEmp, as well as the Notification System. As both types of employ-
ees demonstrate common behavior, namely issuing information, it
makes sense to introduce a common super-actor StudOfficeEmpfrom
which ServEmpand AdminEmpinherit. We assume that the Notifica-

tion System is not part of the student office, hence we include it in the
list of actors. Figure 3.18 summarizes the actors in our example.

3.7 Creating a Use Case Diagram 43

StudOfficeEmp

ServEmp AdminEmp

StudentLecturer

« actor»
Notification System

Figure 3.18
Identified actors

2. Identifying use cases

In the next step, we identify the use cases (see Fig. 3.19). In doing
so, we determine which functionalities the student office must fulfill.

« extend»

« inclu
de»

Student Office

Issue
information

{abstract}
Manage student

data
Register

EnrollWithdraw

Send
certificate

Print
certificate

Create
course

Reserve
lecture hall

Figure 3.19
Identified use cases

44 3 The Use Case Diagram

The specification is very short. However, we know that the objec-
tive is to model the information system supporting the employees
of a student office rather than modeling the functionalities the stu-
dent office provides for the students. If we were to model the latter,
we would need a use case Collect certificate, for example, in which a
student would be involved. This use case is not included in the infor-
mation system as it is not related to the collection of the certificates.
The use case Print certificate is, however. To print, naturally we need
a printer. Should we add this to our list of actors? We do not do this
as we consider the printer to be an integral part of the system to be
modeled.
We also have the functions Register, Enroll, and Withdraw. We could
group these in one use case Manage student data as they are all per-
formed by an actor ServEmp. In doing so, however, we would lose
the information that matriculation includes enrollment for studies.
Therefore, we do not reduce the three use cases to one use case. We
express the relationship between Register and Enroll with an «include»

relationship. As the three use cases have the association to ServEmp

in common, we still introduce the use case Manage student data and
model that the use cases Register, Enroll, and Withdraw inherit from
this use case. To express that this use case cannot be instantiated, we
define it as an abstract use case.
Lecturers can execute the use case Send certificate. If a certificate is
sent to the student office, the student affected is notified. However,
we do not model a separate use case Notify student as, according to
the specification above, students are only notified in the context of
the use case Send certificate. If Notify student cannot be executed in-
dependently, this activity is not a use case of the information system.
Furthermore, we have the use cases Issue information, Reserve lecture

hall, and Create course, where Reserve lecture hall extends the use
case Create course. Figure 3.19 shows the resulting use cases.

3. Identifying associations

Now we have to associate our actors and the use cases (see Fig. 3.20).
Note that we now have two fewer actors than potential candidates
identified (see Fig. 3.18). There are no longer any students—students
may not use the information system in the form that we have modeled
it. And there is no longer a notification system as this is considered
to be part of the student office.
Finally, we need a meaningful description of the use cases.

3.7 Creating a Use Case Diagram 45

Student Office

Issue
information

StudOfficeEmp

AdminEmp

ServEmp

Register

EnrollWithdraw

Send
certificate

Lecturer

Print
certificate

Create
course

Reserve
lecture hall

{abstract}
Manage student

data

« extend»

« inclu
de»

Figure 3.20
Use case diagram of the
information system of
the student office of a
university

4. Describing the use cases

Table 3.2 shows the description of the use case Print certificate as an
example.

46 3 The Use Case Diagram

Table 3.2
Use case description for
Print certificate

Name: Print certificate
Short description: On request from a student, an employee prints the student’s

certificate for a course on paper.
Precondition: All data relevant for the certificate has been sent and the stu-

dent has been graded.
Postcondition: Certificate is available to the student in printed form.
Error situations: Printer is not working.
System state in the
event of an error:

Certificate is not printed.

Actors: AdminEmp
Trigger: Student requests printed certificate.
Standard process: (1) Student enters the student office and requests a certificate.

(2) AdminEmpenters the student’s matriculation number.
(3) AdminEmpselects the certificate.
(4) AdminEmpenters the print command.
(5) System confirms that the certificate was printed.
(6) Certificate is handed over to the student.

Alternative
processes:

(1’) Student requests certificate via e-mail.
(2-5) As above
(6’) Certificate is sent by post.

3.8 Summary

The use case diagram describes the behavior of a system from the view
of the user. This means that this diagram presents the functionalities
that the system offers but does not address the internal implementa-
tion details. The boundaries of the system—what can the system do and
what can it not do?—are clearly defined. The users (actors) are always
outside the system and use the functionalities of the system, which are
depicted in the form of use cases. The relationship between a use case
and an actor is referred to as an association. To keep use case diagrams
as compact as possible, generalization is supported for both actors and
use cases, which allows the extraction of common properties. Use cases
can also access the functionality provided by other use cases by means
of «include» and «extend» relationships. The most important notation
elements are summarized in Table 3.3.

3.8 Summary 47

Name Notation Description

System

System

A

X

Boundaries between the system and
the users of the system

Use case A Unit of functionality of the system

Actor or
« actor»

X
X

Role of the users of the system

Association
A

X
X participates in the execution of A

Generalization
(use case)

B

A

B inherits all properties and the entire
behavior of A

Generalization
(actor)

X

Y

Y inherits from X; Y participates in all
use cases in which X participates

Extend relationship

B

A

« extend»

B extends A: optional incorporation
of use case B into use case A

Include relationship

B

A

« include»

A includes B: required incorporation
of use case B into use case A

Table 3.3
Notation elements for the
use case diagram

