

Sample Unified Process Artifacts and Timing (s-start; r-refine)

Sample Unified Process Artifact Relationships

Discipline Artifact
Iteration^

Incep.
11

Elab.
EL.En

Const.
CL.Cn

Trans.
T1..T2

Business Modeling Domain Model s
Requirements Use-Case Model s r

Vision a r
Supplementary Specification s r
Glossary s r

Design Design Model SW
Architecture Document Data
Model

s s
s

r r

Implementation Implementation Model s r r
Project Managemen t SW Development Plan s r r r
Testing Test Model s r
Environment Development Case s r

: System

enterItem
(id, quantity)

...

Process Sale

1. Customer
arrives ...
2. Cashier
makes new
sale.
3. ...

Use Cases System Sequence Diagrams

make
NewSale()

Sale

timeStamp

Register

...11

ProductCatalog

. . .

domain concepts

system
events

Domain Model

Use-Case Model

Design Model

: Register

enterItem(id, quantity)

: ProductCatalog

spec := getSpecification(id)

addLineItem(spec, quantity)

: Sale

. . .

use-case
realization with
interaction
diagrams

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

makeNewSale()
create()

Register

...

makeNewSale()
enterItem(...)
...

ProductCatalog

...

getSpecification(...) : ProductSpecification
...

the design
classes
discovered
while designing
UCRs can be
summarized in
class diagrams

Cashier

Process
Sale

Use Case Diagrams

: Cashier

1 1

. . .

. . .

Captured-on

General Responsibility Assignment Software Patterns (GRASI

Pattern Description

Information
Expert

A general principle of object design and responsibility assignment?
Assign a responsibility to the information expert — the class that has the information necessary
to fulfill the responsibility.

Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true: 1.
B contains A 4. B records A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A

Controller Who handles a system event?
Assign the responsibility for handling a system event message to a class representing one of
these choices: 1. Represents the overall system, device, or a subsystem (facade controller). 2.
Represents a use case scenario within which the system event occurs (use-case or session
controller)

Low Coupling
(evaluative)

How to support low dependency and increased reuse? Assign

responsibilities so that (unnecessary) coupling remains low.

High
Cohesion
(evaluative)

How to keep complexity manageable? Assign

responsibilities so that cohesion remains high.

Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior — using polymorphic operations — to the types for which the behavior varies.

Pure
Fabrication

Who is responsible when you are desperate, and do not want to violate high cohesion and low
coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience "behavior"
class that does not represent a problem domain concept — something made up, in order to
support high cohesion, low coupling, and reuse.

Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.

Protected
Variations

How to assign responsibilities to objects, subsystems, and systems so that the variations or
instability in these elements do not have an undesirable impact on other elements?
Identify points of predicted variation or instability; assign responsibilities to create a stable
"interface" around them.

TABLE OF CONTENTS

Foreword xv
Preface xvii
PART I INTRODUCTION
1 Object-Oriented Analysis and Design 3

Applying UML and Patterns in OOA/D 3
Assigning Responsibilities 6
What Is Analysis and Design? 6
What Is Object-Oriented Analysis and Design? 7
An Example 7
The UML 10
Further Readings 11

2 Iterative Development and the Unified Process 13
The Most Important UP Idea: Iterative Development 14
Additional UP Best Practices and Concepts 18
The UP Phases and Schedule-Oriented Terms 19
The UP Disciplines (was Workflows) 20
Process Customization and the Development Case 23
The Agile UP 24
The Sequential "Waterfall" Lifecycle 25
You Know You Didn't Understand the UP When... 26
Further Readings 26

3 Case Study: The NextGen POS System 29
The NextGen POS System 29
Architectural Layers and Case Study Emphasis 30
The Book's Strategy: Iterative Learning and Development 31

PART II INCEPTION
4 Inception 35

Inception: An Analogy 36
Inception May Be Very Brief 36
What Artifacts May Start in Inception? 37
You Know You Didn't Understand Inception When... 38

5 Understanding Requirements 41
Types of Requirements
42 Further Readings 43

6 Use-Case Model: Writing Requirements in Context 45
Goals and Stories 46
Background 46
Use Cases and Adding Value 47
Use Cases and Functional Requirements 48
Use Case Types and Formats 49
Fully Dressed Example: Process Sale 50
Explaining the Sections 54
Coals and Scope of a Use Case 59
Finding Primary Actors, Goals, and Use Cases 63
Congratulations: Use Cases Have Been Written, and Are Imperfect 67
Write Use Cases in an Essential Ul-Free Style 68
Actors 70
Use Case Diagrams 71
Requirements in Context and Low-Level Feature Lists 73
Use Cases Are Not Object-Oriented 75

vii

TABLE OF CONTENTS

Use Cases Within the UP 75
Case Study: Use Cases in the NextGen Inception Phase 79
Further Readings 79
UP Artifacts and Process Context 81

7 Identifying Other Requirements 83
NextGen POS Examples 84
NextGen Example: (Partial) Supplementary Specification 84
Commentary: Supplementary Specification 88
NextGen Example: (Partial) Vision 91
Commentary: Vision 93
NextGen Example: A (Partial) Glossary 98
Commentary: Glossary (Data Dictionary) 99
Reliable Specifications: An Oxymoron? 100
Online Artifacts at the Project Website 101
Not Much UML During Inception? 101
Other Requirement Artifacts Within the UP 101
Further Readings 104
UP Artifacts and Process Context 105

8 From Inception to Elaboration 107
Checkpoint: What Happened in Inception? 108
On to Elaboration 109
Planning the Next Iteration 110

Iteration 1 Requirements and Emphasis: Fundamental OOA/D Skills 112
What Artifacts May Start in Elaboration? 118
You Know You Didn't Understand Elaboration When... 114

PART III ELABORATION ITERATION 1
9 Use-Case Model: Drawing System Sequence Diagrams 117

System Behavior 118
System Sequence Diagrams 118
Example of an SSD 119
Inter-System SSDs 120
SSDs and Use Cases 120
System Events and the System Boundary 120
Naming System Events and Operations 121
Showing Use Case Text 122
SSDs and the Glossary 122
SSDs Within the UP 123
Further Readings 124
UP Artifacts 125

10 Domain Model: Visualizing Concepts 127
Domain Models 128
Conceptual Class Identification 132

Candidate Conceptual Classes for the Sales Domain 136
Domain Modeling Guidelines 137
Resolving Similar Conceptual Classes—Register vs. "POST" 139
Modeling the Unreal World 140

Specification or Description Conceptual Classes 140
UML Notation, Models, and Methods: Multiple Perspectives 144
Lowering the Representational Gap 146
Example: The NextGen POS Domain Model 148
Domain Models Within the UP 148
Further Readings 150

viii

TABLE OF CONTENTS

UP Artifacts 151
11 Domain Model: Adding Associations 153

Associations 153
The UML Association Notation 154
Finding Associations—Common Associations List 155
Association Guidelines 157
Roles 157
How Detailed Should Associations Be? 159
Naming Associations 160
Multiple Associations Between Two Types 161
Associations and Implementation 161
NextGen POS Domain Model Associations 162
NextGen POS Domain Model 163

12 Domain Model: Adding Attributes 167
Attributes 167
UML Attribute Notation 168
Valid Attribute Types 168
Non-primitive Data Type Classes 170
Design Creep: No Attributes as Foreign Keys 172
Modeling Attribute Quantities and Units 173
Attributes in the NextGen Domain Model 174
Multiplicity From SalesLineltem to Item 175
Domain Model Conclusion 175

13 Use-Case Model: Adding Detail with Operation Contracts 177
Contracts 177
Example Contract: enterltem 178
Contract Sections 179
Postconditions 179
Discussion—enterltem Postconditions 182
Writing Contracts Leads to Domain Model Updates 183
When Are Contracts Useful? Contracts vs. Use Cases? 183
Guidelines: Contracts 184
NextGen POS Example: Contracts 185
Changes to the Domain Model 186
Contracts, Operations, and the UML 186
Operation Contracts Within the UP 188
Further Readings 191

14 From Requirements to Design in this Iteration 193
Iteratively Do the Right Thing, Do the Thing Right 193
Didn't That Take Weeks To Do? No, Not Exactly. 194 On
to Object Design 194

15 Interaction Diagram Notation 197
Sequence and Collaboration Diagrams 198 Example
Collaboration Diagram: makePayment 199 Example
Sequence Diagram: makePayment 200 Interaction
Diagrams Are Valuable 200 Common Interaction
Diagram Notation 201 Basic Collaboration Diagram
Notation 202 Basic Sequence Diagram Notation 208

16 GRASP: Designing Objects with Responsibilities 215
Responsibilities and Methods 216
Responsibilities and Interaction Diagrams
217 Patterns 218

 iX

TABLE OF CON T EN Ts

GRASP: Patterns of General Principles in Assigning Responsibilities 219
The UML Class Diagram Notation 220
Information Expert (or Expert) 221
Creator 226
Low Coupling '229
High Cohesion 232
Controller 237
Object Design and CRC Cards 245
Further Readings 246

17 Design Model: Use-Case Realizations with GRASP Patterns 247
Use-Case Realizations 248
Artifact Comments 249

Use-Case Realizations for the NextGen Iteration 2.52
Object Design: makeNewSale 253
Object Design: enter-Item 255
Object Design: endSale 260
Object Design: makePayment 264
Object Design: startUp 269
Connecting the UI Layer to the Domain Layer 273
Use-Case Realizations Within the UP 276
Summary 278

18 Design Model: Determining Visibility 279
Visibility Between Objects 279
Visibility 280
Illustrating Visibility in the UML 284

19 Design Model: Creating Design Class Diagrams 285
When to Create DCDs 285
Example DCD 286
DCD and UP Terminology 286
Domain Model vs. Design Model Classes 287
Creating a NextGen POS BCD 287
Notation for Member Details 296
DCDs, Drawing, and CASE Tools 298
DCDs Within the UP 298
UP Artifacts 299

20 Implementation Model: Mapping Designs to Code 301
Programming and the Development Process 302
Mapping Designs to Code 304
Creating Class Definitions from DCDs 304
Creating Methods from Interaction Diagrams 307
Container/Collection Classes in Code 309
Exceptions and Error Handling 309
Defining the Sale--makeLineItem Method 310
Order of Implementation 311
Test-First Programming 311
Summary of Mapping Designs to Code 313
Introduction to the Program Solution 313

PART IV ELABORATION ITERATION 2
21 Iteration 2 and its Requirements 319

Iteration 2 Emphasis: Object Design and Patterns
319 From Iteration 1 to 2 319 Iteration 2
Requirements 321

X

TABLE OF CONTENTS

Refinement of Analysis-oriented Artifacts in this Iteration 322
22 GRASP: More Patterns for Assigning Responsibilities 325

Polymorphism 326 Pure
Fabrication 329
Indirection 332
Protected Variations
334

23 Designing Use-Case Realizations with GoF Design Patterns 341
Adapter (GoF) 342
"Analysis" Discoveries During Design: Domain Model 345
Factory (GoF) 346
Singleton (GoF) 348
Conclusion of the External Services with Varying Interfaces Problem 352
Strategy (GoF) 353
Composite (GoF) and Other Design Principles 358
Facade (GoF) 368
Observer/Publish-Subscribe/Delegation Event Model (GoF) 372
Conclusion 380
Further Readings 380

PART V ELABORATION ITERATION 3
24 Iteration 3 and Its Requirements 383

Iteration 3 Requirements
383 Iteration 3 Emphasis
383

25 Relating Use Cases 385
The include Relationship 386
Terminology: Concrete, Abstract, Base, and Addition Use Cases 388
The extend Relationship 389
The generalize Relationship 390
Use Case Diagrams 391

26 Modeling Generalization 393
New Concepts for the Domain Model 393
Generalization 396
Defining Conceptual Superclasses and Subclasses 397
When to Define a Conceptual Subclass 400
When to Define a Conceptual Superclass 403
NextGen POS Conceptual Class Hierarchies 403
Abstract Conceptual Classes 406
Modeling Changing States 408
Class Hierarchies and Inheritance in Software 409

27 Refining the Domain Model 411
Association Classes 411
Aggregation and Composition 414
Time Intervals and Product Prices—Fixing an Iteration 1 "Error" 418
Association Role Names 419
Roles as Concepts vs. Roles in Associations 420
Derived Elements 421
Qualified Associations 422
Reflexive Associations 423
Ordered Elements 423
Using Packages to Organize the Domain Model 423

28 Adding New SSDs and Contracts 431
New System Sequence Diagrams 431
New System Operations 433
New System Operation Contracts 434

xi

TABLE OF CONTENTS

29 Modeling Behavior in Statechart Diagrams 437
Events, States, and Transitions 437
Statechart Diagrams 438
Statechart Diagrams in the UP? 439
Use Case Statechart Diagrams 439
Use Case Statechart Diagrams for the POS Application 441

Classes that Benefit from Statechart Diagrams 441
Illustrating External and Interval Events 443
Additional Statechart Diagram Notation 444
Further Readings 446

30 Designing the Logical Architecture with Patterns 447
Software Architecture 448 Architectural
Pattern: Layers 450 The Model-View
Separation Principle 471 Further Readings
474

31 Organizing the Design and Implementation Model Packages 475
Package Organization Guidelines 476
More UML Package Notation 482
Further Readings 483

32 Introduction to Architectural Analysis and the SAD 485
Architectural Analysis 486
Types and Views of Architecture 488
The Science: Identification and Analysis of Architectural Factors
488
Example: Partial NextGen POS Architectural Factor Table 491
The Art: Resolution of Architectural Factors 493

Summary of Themes in Architectural Analysis 499
Architectural Analysis within the UP 500
Further Readings 505

33 Designing More Use-Case Realizations with Objects and Patterns
507

Failover to Local Services; Performance with Local Caching 507
Handling Failure 512
Failover to Local Services with a Proxy (GoF) 519 Designing for
Non-Functional or Quality Requirements 523 Accessing External
Physical Devices with Adapters; Buy vs. Build 523 Abstract Factory
(GoF) for Families of Related Objects 525 Handling Payments with
Polymorphism and Do It Myself 528 Conclusion 535

34 Designing a Persistence Framework with Patterns 537
The Problem: Persistent Objects 538

The Solution: A Persistence Service from a Persistence Framework 538
Frameworks 539
Requirements for the Persistence Service and Framework 540
Key Ideas 540
Pattern: Representing Objects as Tables 541
UML Data Modeling Profile 541
Pattern: Object Identifier 542

Accessing a Persistence Service with a Facade 543
Mapping Objects: Database Mapper or Database Broker Pattern 543
Framework Design with the Template Method Pattern 546
Materialization with the Template Method Pattern 546
Configuring Mappers with a MapperFactory 552
Pattern: Cache Management 552
Consolidating and Hiding SQL Statements in One Class 553

xii

TABLE OF CONTENTS

29 Modeling Behavior in Statechart Diagrams 437
Events, States, and Transitions 437
Statechart Diagrams 438
Statechart Diagrams in the UP? 439
Use Case Statechart Diagrams 439
Use Case Statechart Diagrams for the POS Application 441

Classes that Benefit from Statechart Diagrams 441
Illustrating External and Interval Events 443
Additional Statechart Diagram Notation 444
Further Readings 446

30 Designing the Logical Architecture with Patterns 447
Software Architecture 448 Architectural
Pattern: Layers 450 The Model-View
Separation Principle 471 Further Readings
474

31 Organizing the Design and Implementation Model Packages 475
Package Organization Guidelines 476
More UML Package Notation 482
Further Readings 483

32 Introduction to Architectural Analysis and the SAD 485
Architectural Analysis 486
Types and Views of Architecture 488
The Science: Identification and Analysis of Architectural Factors
488
Example: Partial NextGen POS Architectural Factor Table 491
The Art: Resolution of Architectural Factors 493

Summary of Themes in Architectural Analysis 499
Architectural Analysis within the UP 500
Further Readings 505

33 Designing More Use-Case Realizations with Objects and Patterns
507

Failover to Local Services; Performance with Local Caching 507
Handling Failure 512
Failover to Local Services with a Proxy (GoF) 519 Designing for
Non-Functional or Quality Requirements 523 Accessing External
Physical Devices with Adapters; Buy vs. Build 523 Abstract Factory
(GoF) for Families of Related Objects 525 Handling Payments with
Polymorphism and Do It Myself 528 Conclusion 535

34 Designing a Persistence Framework with Patterns 537
The Problem: Persistent Objects 538

The Solution: A Persistence Service from a Persistence Framework 538
Frameworks 539
Requirements for the Persistence Service and Framework 540
Key Ideas 540
Pattern: Representing Objects as Tables 541
UML Data Modeling Profile 541
Pattern: Object Identifier 542

Accessing a Persistence Service with a Facade 543
Mapping Objects: Database Mapper or Database Broker Pattern 543
Framework Design with the Template Method Pattern 546
Materialization with the Template Method Pattern 546
Configuring Mappers with a MapperFactory 552
Pattern: Cache Management 552
Consolidating and Hiding SQL Statements in One Class 553

xii

TABLE OF CONTENTS

Transactional States and the State Pattern 554 Designing
a Transaction with the Command Pattern 556 Lazy
Materialization with a Virtual Proxy 559 How to Represent
Relationships in Tables 562 PersistentObject Superclass and
Separation of Concerns 563 Unresolved Issues 564

PART VI SPECIAL TOPICS
35 On Drawing and Tools 567

On Speculative Design and Visual Thinking 567
Suggestions for UML Drawing Within the Development Process 568
Tools and Sample Features 571
Example Two 573

36 Introduction to Iterative Planning and Project Issues 575
Ranking Requirements 576
Ranking Project Risks 579
Adaptive vs. Predictive Planning 579
Phase and Iteration Plans 581
Iteration Plan: What to Do in the Next Iteration? 582
Requirements Tracking Across Iterations 583
The (Invalidity of Early Estimates 585
Organizing Project Artifacts 585
Some Team Iteration Scheduling Issues 586
You Know You Didn't Understand Planning in the UP When... 588
Further Readings 588

37 Comments on Iterative Development and the UP 589
Additional UP Best Practices and Concepts 589
The Construction and Transition Phases 591
Other Interesting Practices 592
Motivations for Timeboxing an Iteration 593
The Sequential "Waterfall" Lifecycle 593
Usability Engineering and User Interface Design 599
The UP Analysis Model 599
The RUP Product 600
The Challenge and Myths of Reuse 601

38 More UML Notation 603
General Notation 603
Implementation Diagrams 604
Template (Parameterized, Generic) Class 606
Activity Diagrams 607

Bibliography 609 Glossary 615 Index 621

xiii

FOREWORD

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the "vision," and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are easy
to communicate, to review, to implement, and to evolve is what lies at the core of
this book. This is what you will learn.
The Unified Modeling Language (UML) has become the universally-accepted
language for software design blueprints. UML is the visual language used to
convey design ideas throughout this book, which emphasizes how developers
really apply frequently used UML elements, rather than obscure features of the
language.
The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to
describe design fragments, and reuse design ideas, helping developers leverage
the expertise of others. Patterns give a name and form to abstract heuristics,
rules and best practices of object-oriented techniques. No reasonable engineer
wants to start from a blank slate, and this book offers a palette of readily usable
design patterns.
But software design looks a bit dry and mysterious when not presented in the
context of a software engineering process. And on this topic, I am delighted that
for his second edition, Craig Larman has chosen to embrace and introduce the
Unified Process, showing how it can be applied in a relatively simple and
low-ceremony way. By presenting the case study in an iterative, risk-driven,
architecture-centric process, Craig's advice has realistic context; he exposes
the dynamics of what really happens in software development, and shows the
external forces at play. The design activities are connected to other tasks, and
they no longer appear as a purely cerebral activity of systematic transformations
or creative intuition. And Craig and I are convinced of the benefits of iterative
development, which you will see abundantly illustrated throughout.
So for me, this book has the right mix of ingredients. You will learn a systematic
method to do Object-Oriented Analysis and Design (OOA/D) from a great
teacher, a brilliant methodologist, and an "OO guru" who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni-

xv

XVI

FOREWORD

fled Process. He gradually presents more sophisticated design
patterns—this will make the book very handy when you are faced with
real-world design challenges. And he uses the most widely accepted
notation.
I'm honored to have had the opportunity to work directly with the author
of this major book. I enjoyed reading the first edition, and was delighted
when he asked me to review the draft of his second edition. We met several
times and exchanged many e-mails. I have learned much from Craig, even
about our own process work on the Unified Process and how to improve it
and position it in various organizational contexts. I am certain that you will
learn a lot, too, in reading this book, even if you are already familiar with
OOA/D. And, like me, you will find yourself going back to it, to refresh your
memory, or to gain further insights from Craig's explanations and experience.
In an iterative process, the result of the second iteration improves on the first.
Similarly, the writing matures, I suppose; even if you have the first edition,
you'll enjoy and benefit from the second one.
Happy reading!

Philippe Kruchten
Rational Fellow
Rational Software
Canada Vancouver, BC

PREFACE

Design robust and
maintainable
object systems.

Follow a roadmap
through require-
ments, analysis,
design, and coding.

Use the UML to
illustrate analysis
and design models.

Improve designs by
applying the
"gang-of-four" and
GRASP design
patterns.

Learn efficiently by
following a refined
presentation.

Learn from a
realistic exercise.

Thank you for reading this book! This is a practical introduction to object-ori-
ented analysis and design (OOA/D), and to related aspects of iterative develop-
ment. I am grateful that the first edition was received as a popular introduction
to OOA/D throughout the world, translated into many languages. Therefore,
this second edition builds upon and refines—rather than replaces—the
content in the first. I want to sincerely thank all the readers of the first edition.
Here is how the book will benefit you.

First, the use of object technology has proliferated in the development of soft-
ware, and mastery of OOA/D is critical for you to create robust and maintain-
able object systems.

Second, if you are new to OOA/D, you are understandably challenged about
how to proceed through this complex subject; this book presents a well-defined
roadmap—the Unified Process—so that you can move in a step-by-step process
from requirements to code.

Third, the Unified Modeling Language (UML) has emerged as the standard
notation for modeling; so it is useful for you to be conversant in it. This book
teaches the skills of OOA/D using the UML notation.

Fourth, design patterns communicate the "best practice" idioms and solutions
that object-oriented design experts apply in order to create systems. In this book
you will learn to apply design patterns, including the popular "gang-of-four" pat-
terns, and the GRASP patterns, which communicate fundamental principles of
responsibility assignment in object design. Learning and applying patterns will
accelerate your mastery of analysis and design.

Fifth, the structure and emphasis in this book is based on years of experience in
training and mentoring thousands of people in the art of OOA/D. It reflects that
experience by providing a refined, proven, and efficient approach to learning the
subject so your investment in reading and learning is optimized.

Sixth, it exhaustively examines a single case study—to realistically illustrate
the entire OOA/D process, and goes deeply into thorny details of the problem; it
is a realistic exercise.

Translate to code. Seventh, it shows how to map object design artifacts to code in Java.

Design a layered
architecture.

Eighth, it explains how to design a layered architecture and relate the graphi-
cal user interface layer to domain and technical services layers.

XVII

Design a
framework.

PREFACE

Finally, it shows you how to design an object-oriented framework and applies
this to the creation of a framework for persistent storage in a database.

Objectives

The overarching objective is this:

XVIII

Help students and developers create object designs through the application of
a set of explainable principles and heuristics.

By studying and applying the information and techniques presented here, you
will become more adept at understanding a problem in terms of its processes
and concepts, and designing a solid solution using objects.

Intended Audience

This book is an introduction to OOA/D, related requirements analysis, and to
iterative development with the Unified Process as a sample process; it is not
meant as an advanced text. It is for the following audience:

• Developers and students with experience in an object-oriented programming
language, but who are new—or relatively new—to object-oriented
analysis
and design.

• Students in computer science or software engineering courses studying
object technology.

• Those with some familiarity in OOA/D who want to learn the UML notation,
apply patterns, or who want to sharpen and deepen their analysis and
design skills.

Prerequisites

Some prerequisite knowledge is assumed—and necessary—to benefit from
this book:

• Knowledge and experience in an object-oriented programming language
such as Java, C#, C++, or Smalltalk.

• Knowledge of fundamental object technology concepts, such as
class,
instance, interface, polymorphism, encapsulation, interfaces, and inherit
ance.

Fundamental object technology concepts are not defined.

Java Examples

In general, the book presents code examples in Java or discusses Java imple-
mentations, due to its widespread familiarity. However, the ideas presented are
applicable to most—if not all—object-oriented programming languages.

PREFACE

Book Organization

The overall strategy in the organization of this book is that analysis and design
topics are introduced in an order similar to that of a software development
project running across an "inception" phase (a Unified Process term) followed by
three iterations (see Figure P.I).

1. The inception phase chapters introduce the basics of requirements analysis.
2. Iteration 1 introduces fundamental OOA/D and how to assign responsibili

ties to objects.

3. Iteration 2 focuses on object design, especially on introducing some high-use
"design patterns."

4. Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

Figure P.I. The organization of the book follows that of a development project.

Web-Related Resources

• Please see www.craiglarman.com for articles related to object technology,
patterns, and process.

• Some instructor resources can be found at www.phptr.com/larman.

Enhancements to the First Edition

While retaining the same core as the first edition, the second is refined in many
ways, including:

• Use cases are updated to follow the very popular approach of [CockburnOl].
• The well-known Unified Process (UP) is used as the example iterative pro

cess within which to introduce OOA/D. Thus, all artifacts are named accord
ing to UP terms, such as Domain Model.

• New requirements in the case study, leading to a third iteration.

XIX

Overview Inception Iteration
1

Iteration
2

Iteration
3

Object-Oriented
Analysis

Object-Oriented
Design

Translating
Designs to Code

The Book

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Special
Topics

xx

PREFACE

Updated treatment of design patterns.
Introduction to architectural analysis.
Introduction of Protected Variations as a GRASP pattern.
A 50/50 balance between sequence and collaboration diagrams.
The latest UML notation updates.
Discussion of some practical aspects of drawing using whiteboards or UML
CASE tools.

Acknowledgments

First, a very special thanks to my friends and colleagues at Valtech, world-class
object developers and iterative development experts, who in some way contrib-
uted to, supported, or reviewed the book, including Chris Tarr, Michel Ezran,
Tim Snyder, Curtis Hite, Celso Gonzalez, Pascal Roques, Ken DeLong, Brett
Schuchert, Ashley Johnson, Chris Jones, Thomas Liou, Darryl Gebert, Frank
Rodorigo, Jean-Yves Hardy, and many more than I can name.
To Philippe Kruchten for writing the foreword, reviewing, and helping in so
many ways.
To Martin Fowler and Alistair Cockburn for many insightful discussions on pro-
cess and design, quotes, and reviews.
To John Vlissides and Cris Kobryn for the kind quotes.
To Chelsea Systems and John Gray for help with some requirements inspired by
their Java technology ChelseaStore POS system.
To Pete Goad and Dave Astels at TogetherSoft for their support.
Many thanks to the other reviewers, including Steve Adolph, Bruce Anderson,
Len Bass, Gary K. Evans, Al Goerner, Luke Hohmann, Eric Lefebvre, David
Nunn, and Robert J. White.
Thanks to Paul Becker at Prentice-Hall for believing the first edition would be a
worthwhile project, and to Paul Petralia and Patti Guerrieri for shepherding the
second.
Finally, a special thanks to Graham Glass for opening a door.

About the Author

Craig Larman serves as Director of Process for Valtech, an international con-
sulting company with divisions in Europe, Asia, and North America, specializ-
ing in e-business systems development, object technologies, and iterative
development with the Unified Process.
Since the mid 1980s, Craig has helped thousands of developers to apply
object-oriented programming, analysis, and design, and assisted organizations
adopt iterative development practices.

PREFACE

After a failed career as a wandering street musician, he built systems in APL,
PL/I, and CICS in the 1970s. Starting in the early 1980s—after a full
recovery-he became interested in artificial intelligence (having little of his own),
natural language processing, and knowledge representation, and built
knowledge systems with Lisp machines, Lisp, Prolog, and Smalltalk. He plays
bad lead guitar in his part-time band, the Changing Requirements (it used to be
called the Requirements, but some band members changed...).

He holds a B.Sc. and M.Sc. in computer science from Simon Fraser University in
Vancouver, Canada.

Craig can be reached at clarman@acm.org and www.craiglarman.com.

Typographical Conventions

This is a new term in a sentence. This is a Class or method name in a sentence.
This is an author reference [Bob67]. A language independent scope resolution
operator "--" is used to indicate a class and its associated method as follows:
ClassName--methodName.

Production Notes

The manuscript of this book was created with Adobe FrameMaker. All drawings
were done with Microsoft Visio. The body font is New Century Schoolbook. The
final print images were generated as PDF files using Adobe Acrobat Distiller,
from PostScript generated by an AGFA driver.

XXI

