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General Responsibility Assignment Software Patterns (GRASI

Pattern Description 

Information 
Expert 

A general principle of object design and responsibility assignment?
Assign a responsibility to the information expert — the class that has the information necessary 
to fulfill the responsibility. 

Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true: 1. 
B contains A                                            4. B records A 
2. B aggregates A                                          5. B closely uses A 
3. B has the initializing data for A 

Controller Who handles a system event?
Assign the responsibility for handling a system event message to a class representing one of 
these choices: 1. Represents the overall system, device, or a subsystem (facade controller). 2. 
Represents a use case scenario within which the system event occurs (use-case or session 
controller) 

Low Coupling 
(evaluative) 

How to support low dependency and increased reuse? Assign 

responsibilities so that (unnecessary) coupling remains low. 

High 
Cohesion 
(evaluative) 

How to keep complexity manageable? Assign 

responsibilities so that cohesion remains high. 

Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the 
behavior — using polymorphic operations — to the types for which the behavior varies. 

Pure 
Fabrication 

Who is responsible when you are desperate, and do not want to violate high cohesion and low 
coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience "behavior" 
class that does not represent a problem domain concept — something made up, in order to 
support high cohesion, low coupling, and reuse. 

Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or 
services, so that they are not directly coupled. 

Protected 
Variations 

How to assign responsibilities to objects, subsystems, and systems so that the variations or 
instability in these elements do not have an undesirable impact on other elements?
Identify points of predicted variation or instability; assign responsibilities to create a stable 
"interface" around them. 
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FOREWORD 

Programming is fun, but developing quality software is hard. In between the 
nice ideas, the requirements or the "vision," and a working software product, 
there is much more than programming. Analysis and design, defining how to 
solve the problem, what to program, capturing this design in ways that are easy 
to communicate, to review, to implement, and to evolve is what lies at the core of 
this book. This is what you will learn. 
The Unified Modeling Language (UML) has become the universally-accepted 
language for software design blueprints. UML is the visual language used to 
convey design ideas throughout this book, which emphasizes how developers 
really apply frequently used UML elements, rather than obscure features of the 
language. 
The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to 
describe design fragments, and reuse design ideas, helping developers leverage 
the expertise of others. Patterns give a name and form to abstract heuristics, 
rules and best practices of object-oriented techniques. No reasonable engineer 
wants to start from a blank slate, and this book offers a palette of readily usable 
design patterns. 
But software design looks a bit dry and mysterious when not presented in the 
context of a software engineering process. And on this topic, I am delighted that 
for his second edition, Craig Larman has chosen to embrace and introduce the 
Unified Process, showing how it can be applied in a relatively simple and 
low-ceremony way. By presenting the case study in an iterative, risk-driven, 
architecture-centric process, Craig's advice has realistic context; he exposes 
the dynamics of what really happens in software development, and shows the 
external forces at play. The design activities are connected to other tasks, and 
they no longer appear as a purely cerebral activity of systematic transformations 
or creative intuition. And Craig and I are convinced of the benefits of iterative 
development, which you will see abundantly illustrated throughout. 
So for me, this book has the right mix of ingredients. You will learn a systematic 
method to do Object-Oriented Analysis and Design (OOA/D) from a great 
teacher, a brilliant methodologist, and an "OO guru" who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni- 

xv 
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FOREWORD 

fled Process. He gradually presents more sophisticated design 
patterns—this will make the book very handy when you are faced with 
real-world design challenges. And he uses the most widely accepted 
notation. 
I'm honored to have had the opportunity to work directly with the author 
of this major book. I enjoyed reading the first edition, and was delighted 
when he asked me to review the draft of his second edition. We met several 
times and exchanged many e-mails. I have learned much from Craig, even 
about our own process work on the Unified Process and how to improve it 
and position it in various organizational contexts. I am certain that you will 
learn a lot, too, in reading this book, even if you are already familiar with 
OOA/D. And, like me, you will find yourself going back to it, to refresh your 
memory, or to gain further insights from Craig's explanations and experience. 
In an iterative process, the result of the second iteration improves on the first. 
Similarly, the writing matures, I suppose; even if you have the first edition, 
you'll enjoy and benefit from the second one. 
Happy reading! 

Philippe Kruchten 
Rational Fellow 
Rational Software 
Canada Vancouver, BC 



PREFACE 

Design robust and 
maintainable 
object systems. 

Follow a roadmap 
through require-
ments, analysis, 
design, and coding. 

Use the UML to 
illustrate analysis 
and design models. 

Improve designs by 
applying the 
"gang-of-four" and 
GRASP design 
patterns. 

Learn efficiently by 
following a refined 
presentation. 

Learn from a 
realistic exercise. 

Thank you for reading this book! This is a practical introduction to object-ori-
ented analysis and design (OOA/D), and to related aspects of iterative develop-
ment. I am grateful that the first edition was received as a popular introduction 
to OOA/D throughout the world, translated into many languages. Therefore, 
this second edition builds upon and refines—rather than replaces—the 
content in the first. I want to sincerely thank all the readers of the first edition. 
Here is how the book will benefit you. 

First, the use of object technology has proliferated in the development of soft-
ware, and mastery of OOA/D is critical for you to create robust and maintain-
able object systems. 

Second, if you are new to OOA/D, you are understandably challenged about 
how to proceed through this complex subject; this book presents a well-defined 
roadmap—the Unified Process—so that you can move in a step-by-step process 
from requirements to code. 

Third, the Unified Modeling Language (UML) has emerged as the standard 
notation for modeling; so it is useful for you to be conversant in it. This book 
teaches the skills of OOA/D using the UML notation. 

Fourth, design patterns communicate the "best practice" idioms and solutions 
that object-oriented design experts apply in order to create systems. In this book 
you will learn to apply design patterns, including the popular "gang-of-four" pat-
terns, and the GRASP patterns, which communicate fundamental principles of 
responsibility assignment in object design. Learning and applying patterns will 
accelerate your mastery of analysis and design. 

Fifth, the structure and emphasis in this book is based on years of experience in 
training and mentoring thousands of people in the art of OOA/D. It reflects that 
experience by providing a refined, proven, and efficient approach to learning the 
subject so your investment in reading and learning is optimized. 

Sixth, it exhaustively examines a single case study—to realistically illustrate 
the entire OOA/D process, and goes deeply into thorny details of the problem; it 
is a realistic exercise. 

Translate to code.       Seventh, it shows how to map object design artifacts to code in Java. 

Design a layered 
architecture. 

Eighth, it explains how to design a layered architecture and relate the graphi-
cal user interface layer to domain and technical services layers. 

XVII 



Design a 
framework. 

PREFACE 

Finally, it shows you how to design an object-oriented framework and applies 
this to the creation of a framework for persistent storage in a database. 

Objectives 

The overarching objective is this: 

  

XVIII 

Help students and developers create object designs through the application of 
a set of explainable principles and heuristics. 

By studying and applying the information and techniques presented here, you 
will become more adept at understanding a problem in terms of its processes 
and concepts, and designing a solid solution using objects. 

Intended Audience 

This book is an introduction to OOA/D, related requirements analysis, and to 
iterative development with the Unified Process as a sample process; it is not 
meant as an advanced text. It is for the following audience: 

• Developers and students with experience in an object-oriented programming 
language, but who are new—or relatively new—to object-oriented 
analysis 
and design. 

• Students in computer science or software engineering courses studying 
object technology. 

• Those with some familiarity in OOA/D who want to learn the UML notation, 
apply patterns, or who want to sharpen and deepen their analysis and 
design skills. 

Prerequisites 

Some prerequisite knowledge is assumed—and necessary—to benefit from 
this book: 

• Knowledge and experience in an object-oriented programming language 
such as Java, C#, C++, or Smalltalk. 

• Knowledge   of fundamental   object   technology   concepts,   such   as   
class, 
instance, interface, polymorphism, encapsulation, interfaces, and inherit 
ance. 

Fundamental object technology concepts are not defined. 

Java Examples 

In general, the book presents code examples in Java or discusses Java imple-
mentations, due to its widespread familiarity. However, the ideas presented are 
applicable to most—if not all—object-oriented programming languages. 



PREFACE 

Book Organization 

The overall strategy in the organization of this book is that analysis and design 
topics are introduced in an order similar to that of a software development 
project running across an "inception" phase (a Unified Process term) followed by 
three iterations (see Figure P.I). 

1. The inception phase chapters introduce the basics of requirements analysis. 
2. Iteration 1 introduces fundamental OOA/D and how to assign responsibili 

ties to objects. 

3. Iteration 2 focuses on object design, especially on introducing some high-use 
"design patterns." 

4. Iteration 3 introduces a variety of subjects, such as architectural analysis 
and framework design. 

Figure P.I. The organization of the book follows that of a development project. 

Web-Related Resources 

• Please see www.craiglarman.com for articles related to object technology, 
patterns, and process. 

• Some instructor resources can be found at www.phptr.com/larman. 

Enhancements to the First Edition 

While retaining the same core as the first edition, the second is refined in many 
ways, including: 

• Use cases are updated to follow the very popular approach of [CockburnOl]. 
• The well-known Unified Process (UP) is used as the example iterative pro 

cess within which to introduce OOA/D. Thus, all artifacts are named accord 
ing to UP terms, such as Domain Model. 

• New requirements in the case study, leading to a third iteration. 

XIX 

Overview Inception Iteration
1

Iteration
2

Iteration
3

Object-Oriented
Analysis

Object-Oriented
Design

Translating
Designs to Code

The Book

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Special
Topics
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Updated treatment of design patterns. 
Introduction to architectural analysis. 
Introduction of Protected Variations as a GRASP pattern. 
A 50/50 balance between sequence and collaboration diagrams. 
The latest UML notation updates. 
Discussion of some practical aspects of drawing using whiteboards or UML 
CASE tools. 
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Typographical Conventions 

This is a new term in a sentence. This is a Class or method name in a sentence. 
This is an author reference [Bob67]. A language independent scope resolution 
operator "--" is used to indicate a class and its associated method as follows: 
ClassName--methodName. 
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